
i

ALAGAPPA UNIVERSITY
[Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]
 (A State University Established by the Government of Tamil Nadu)

KARAIKUDI – 630 003

DIRECTORATE OF DISTANCE EDUCATION

M.Sc. [Computer Science]

III – Semester

341 33

WEB TECHNOLOGY

ii

"The copyright shall be vested with Alagappa University"

All rights reserved. No part of this publication which is material protected

by this copyright notice may be reproduced or transmitted or utilized or
stored in any form or by any means now known or hereinafter invented,
electronic, digital or mechanical, including photocopying, scanning,
recording or by any information storage or retrieval system, without prior
written permission from the Alagappa University, Karaikudi, Tamil Nadu.

Author:

Dr. A. PADMAPRIYA

Associate Professor

Department of Computer Science

Alagappa University
Karaikudi

iii

SYLLABI-BOOK MAPPING TABLE

Web Technology

Syllabi Mapping in Book

BLOCK I : HTML,XHTML AND STYLE SHEETS

UNIT 1 : Introduction:HTML, XML and WWW, Basic
HTML, document Body text, hyperlinks

(Pages 1-26)

UNIT 2 : Lists, using color and images, tables, multimedia

objects
(Pages 27-45)

UNIT 3 : Style sheets: using styles, examples, formatting
blocks of information

(Page 46-70)

BLOCK II : CLIENT SIDE PROGRAMMING

UNIT 4 : Introduction: Dynamic HTML, JavaScript,

variables, string manipulations, mathematical

functions, operators, arrays, functions

(Pages 71-118)

UNIT 5 : Regular expressions, cookies and Events (Pages 119-135)

UNIT 6 : Dynamic HTML with JavaScript: Data validation,

messages and confirmations, writing to a different

frame, Rollover buttons, moving images

(Pages 136-150)

BLOCK III : HOST OBJECTS

UNIT 7 : Browsers and DOM, DOM history and levels,

Intrinsic event handling
(Pages 151-164)

UNIT 8 : Representing web Data: XML, Documents and
vocabularies, versions and declarations,

namespaces

(Pages 165-175)

UNIT 9 : JavaScript and XML: Ajax, DOM based XML

processing, SAX,XSL,XSLT,XPATH

(Pages 176-198)

BLOCK IV : SERVER SIDE PROGRAMMING

UNIT 10 : Java Servlets, history of web applications, The
power of Servlets, HTTP servlet basics, the

servlet API, page generations

(Pages 199-206)

UNIT 11 : The servlet Lifecycle: The servlet alternative,

servlet reloading, Init and Destroy, single thread

model, background processing, load on startup,
client side caching, server side caching

(Pages 207-218)

UNIT 12 : Retrieving information: the servlet, the server, the

client

(Pages 219-226)

iv

BLOCK V : JSP TECHNOLOGY

UNIT 13 : Introduction: Need, HTTP and servlet basics,

HTTP request/response model, Servlets, anatomy

of a JSP page, JSP application design with
MVC

(Pages 227-235)

UNIT 14 : Setting up JSP Environment: Installing the JSDK,

Installing Tomcat server, testing tomcat, creating,
installing, running a JSP page

(Pages 236-245)

MODEL QUESTION PAPER (pages 246-247)

v

CONTENTS

BLOCK 1 : COMPUTER SECURITY INTRODUCTION

UNIT 1 Introduction to HTML 1-26

1.0 Introduction

1.1 Objectives

1.2 Internet

1.3 World Wide Web

1.4 HTML

1.5 XML

1.6 Basic HTML Tags

1.7 Hyperlinks

1.8 Answers to Check Your Progress

1.9 Let us Sum Up

1.10 Self-Assessment Exercises

1.11 Suggested Readings

UNIT 2 HTML Tags 27-45

2.0 Introduction

2.1 Objectives

2.2 Lists

2.3 Colors

2.4 Images

2.5 Tables

2.6 Multimedia Objects

2.7 Answers to Check Your Progress

2.8 Let us Sum Up

2.9 Self-Assessment Exercises

2.10 Suggested Readings

UNIT 3 Style Sheets 46-70

3.0 Introduction

3.1 Objectives

3.2 Cascading Style Sheets

3.3 Formatting Block of Information

3.4 CSS Selectors

3.5 Ways to Insert Styles

3.6 Answers to Check Your Progress

3.7 Let us Sum Up

vi

3.8 Self-Assessment Exercises

3.9 Suggested Readings

BLOCK II : CLIENT SIDE PROGRAMMING

UNIT 4 JavaScript 71-118

4.0 Introduction

4.1 Objectives

4.2 Dynamic HTML

4.3 Java Script

4.4 Variables

4.5 Operators

4.6 Statements

4.7 Objects

4.8 Mathematical Functions

4.9 String Manipulators

4.10 Arrays

4.11 Functions

4.12 Answers to Check Your Progress

4.13 Let us Sum up

4.14 Self-Assessment Exercises

4.15 Suggested Readings

UNIT 5 Cookies and Events 119-135

5.0 Introduction

5.1 Objectives

5.2 Regular Expressions

5.3 Cookies

5.4 Events

5.5 Answers to Check Your Progress

5.6 Let us Sum up

5.7 Self-Assessment Exercises

5.8 Suggested Readings

UNIT 6 Dynamic HTML using JavaScript 136-150

6.0 Introduction

6.1 Objectives

6.2 Data Validation

6.3 Messages and Confirmation

vii

6.4 Writing to a different frame

6.5 Rollover buttons

6.6 Moving images

6.7 Answers to Check Your Progress

6.8 Let us Sum up

6.9 Self-Assessment Exercises

6.10 Suggested Readings

BLOCK III : HOST OBJECTS

UNIT 7 Document Object Model 151-164

7.0 Introduction

7.1 Objectives

7.2 Document Object Model

7.3 Browsers and DOM

7.4 DOM history and levels

7.5 Document elements

7.6 Intrinsic Event Handling

7.7 Answers to Check Your Progress

7.8 Let us Sum up

7.9 Self-Assessment Exercises

7.10 Suggested Readings

UNIT 8 Representing Web Data 165-175

8.0 Introduction

8.1 Objectives

8.2 XML Basics

8.3 XML and HTML

8.4 Documents and Vocabularies

8.5 Versions and declarations

8.6 Namespaces

8.7 Answers to Check Your Progress

8.8 Let us Sum up

8.9 Self-Assessment Exercises

8.10 Suggested Readings

UNIT 9 JavaScript and XML 176-198

9.0 Introduction

9.1 Objectives

viii

9.2 Reading XML data

9.3 Ajax

9.4 DOM based XML processing

9.5 SAX

9.6 XSL, XSLT, XPATH

9.7 Answers to Check Your Progress

9.8 Let us Sum up

9.9 Self-Assessment Exercises

9.10 Suggested Readings

BLOCK IV : SERVER SIDE PROGRAMMING

UNIT 10 Java Servlets 199-206

10.0 Introduction

10.1 Objectives

10.2 History of web applications

10.3 The power of Servlets

10.4 HTTP Servlet basics

10.5 The Servlet API

10.6 Page Generations

10.7 Answers to Check Your Progress

10.8 Let us Sum up

10.9 Self-Assessment Exercises

10.10 Suggested Readings

UNIT 11 Servlet Life Cycle 207-218

11.0 Introduction

11.1 Objectives

11.2 The Servlet alternative

11.3 Servlet Reloading

11.4 Init And Destroy

11.5 Single Thread Model

11.6 Background Processing

11.7 Load On Startup

11.8 Client Side Caching and Server Side Caching

11.9 Answers to Check Your Progress

11.10 Let us Sum up

11.11 Self-Assessment Exercises

11.12 Suggested Readings

ix

UNIT 12 Retrieving Information 219-226

12.0 Introduction

12.1 Objectives

12.2 The Servlet

12.3 The Server

12.4 The Client

12.5 Answers to Check Your Progress

12.6 Let us Sum up

12.7 Self-Assessment Exercises

12.8 Suggested Readings

BLOCK V : JSP TECHNOLOGY

UNIT 13 Java Server Pages 227-235

13.0 Introduction

13.1 Objectives

13.2 Need for JSP

13.3 HTTP Servlet basics

13.4 HTTP request/response model

13.5 Anatomy of a JSP page

13.6 JSP application design with MVC

13.7 Answers to Check Your Progress

13.8 Let us Sum up

13.9 Self-Assessment Exercises

13.10 Suggested Readings

UNIT 14 Setting up JSP Environment 236-245

14.0 Introduction

14.1 Objectives

14.2 Installing the JSDK

14.3 Installing the Tomcat Server

14.4 Testing Tomcat

14.5 Creating, installing and running a JSP page

14.6 JSP Program Example

14.7 Answers to Check Your Progress

14.8 Let us Sum up

14.9 Self-Assessment Exercises

14.10 Suggested Readings

 Model Question paper 246-247

x

INTRODUCTION

Web programming is about more than creating and formatting webpages and websites,

though that is often a starting point for many. Using scripting languages such as JavaScript,

Perl and PH, it is possible to add a lot more functionality to a web site. This course material

will cover the essentials of working with the most important web technologies. The scope of

this material begins by creating reasonably simple webpages with HTML, then working

through related document and content tagging systems such as dynamic HTML and

eventually XML.

This book follows the self-instruction mode or the SIM format wherein each unit begins with

an ‘Introduction’ to the topic followed by an outline of the ‘Objectives’. The content is

presented in a simple and structured form with ‘Check Your Progress’ questions for better

understanding. At the end of the each unit a list of ‘Key Words’ is provided along with a

‘Summary’ and a set of ‘Self-Assessment Questions and Exercises’ for effective recap.

1 Self-Instruction Manual

Notes

BLOCK – I

HTML,XHTML AND STYLE SHEETS

UNIT- 1 INTRODUCTION TO HTML

Structure

1.0 Introduction

1.1 Objectives

1.2 Internet

1.3 World Wide Web

1.4 HTML

1.5 XML

1.6 Basic HTML Tags

1.7 Hyperlinks

1.8 Answers to Check Your Progress

1.9 Let us Sum up

1.10 Self-Assessment Exercises

1.11 Suggested Readings

1.0 INTRODUCTION

Since its development just two decades ago, the World Wide Web has

grown to become the

1.1 OBJECTIVES

After going through this unit, you will be able to:

 Learn the basics of Internet and www

 Understand the evolution of markup languages

 Understand about tags

 Create simple web pages using HTML

1.2INTERNET

Computers are increasingly interconnected creating new pathways to the

information assets. The term "Internet" is a generalization that covers

thousands of interconnected networks around the world based on very

different technologies.

Introduction to HTML

infrastructure that supports innumerable applications essential to

everyday life. We use Web sites and the information they contain to

create and connect with a seemingly unlimited amount of

information.Web-based systems and technologies are now used for a

vast number of applications, and this unit aims to provide an overview

of one such technology – HTML.

2 Self-Instruction Manual

Notes

The networks usually differ in any of the possible network specific

parameter such as transmission medium, geographical size, number of

nodes, transmission speed, throughput, reliability etc. The reason behind

this generalization is because the Internet is independent of the physical

hardware. In short, it represents a homogeneous interface to its users in

spite of the heterogeneous hardware that it is based on.

Internet is the collection of networks connected via the public

backbone and communicating across networks using TCP/IP.

Evolution of Internet

 The Internet what we are using today is developed from the very

first network called ARPANET.

 The ARPANET (Advanced Research Projects Agency Network)

developed to link US Defence Department researchers with

those in several Universities in the USA. It became operational

in late 1969.

 The first appearance of the term ‘Internet’- which was coined

by the Network Working Group - was in 1974 as an

abbreviation for ‗Internetworking‘.

 The things developed from there, with electronic mail soon

becoming an important form of communication within the

research community that used this technology.

 At that time, making use of the Internet was not something that

the average person or business could easily do or find much

value in.

 The later advent of the Web that use of the Internet became

common, and a general topic of conversation in many

communities.

The evolution of today‘s Internet is visualized in the following figure. It

has moved from Internet of content to Internet of Things.

Fig 1.1. Evolution of today’s Internet

The Internet Timeline is given below. Only the notable events are

listed in the table.

Introduction to HTML

3 Self-Instruction Manual

Notes

Table 1.1. Internet Timeline

Internet Timeline

Early research and development
 1963: ARPANET concepts developed

 1969: ARPANET carries its first packets

 1972: Internet Assigned Numbers Authority (IANA) established

 1974: Transmission Control Program specification published

 1976: X.25 protocol approved

 1979: Internet Activities Board (IAB)

 1980: USENET news using UUCP

 1980: Ethernet standard introduced

Merging the networks and creating the Internet
 1982: TCP/IP protocol suite formalized

 1982: Simple Mail Transfer Protocol (SMTP)

 1983: Domain Name System (DNS)

 1985: First .COM domain name registered

 1986: NSFNET with 56 kbit/s links

 1986: Internet Engineering Task Force (IETF)

 1988: OSI Reference Model released

 1991: World Wide Web (WWW)

 1992: Internet Society (ISOC) established

 1994: Full text web search engines

Commercialization, privatization, broader access leads to the modern Internet

 1995: New Internet architecture with commercial ISPs connected at NAPs

 1995: IPv6 proposed

 1999: IEEE 802.11b wireless networking

 2000: Dot-com bubble bursts

 2001: New top-level domain names activated

 2004: UN Working Group on Internet Governance (WGIG)

 2006: First meeting of the Internet Governance Forum

 2010: First internationalized country code top-level domains registered

 2016: ICANN contract with U.S. Dept. of Commerce ends, IANA oversight

passes to the global Internet community

 Continues…

The simple architecture of Internet is given in the figure below for better

understanding.

Fig 1.2. Simple Internet Architecture

INTERNET

Introduction to HTML

4 Self-Instruction Manual

Notes

The Internet has brought revolutionary change in the world of

technologies, bringing the entire globe interconnected. But it follows some

specific architecture and structure for communication. The most popular is

the Client-Server architecture. In this client-server model,

 Servers – distributes and controls the majority of the resources

as well as services for clients

 Clients – make use of the resources and services offered by the

server

Such structural designs are made up of one or more client systems

connected to central or main servers through a network. All such systems

associated with it share computing resources. Here,

1. The client computer sends a request for data to the server

through the internet

2. The server accepts the requested, process it and deliver the

data packets requested back to the client.

One special feature is that the server computer has the potential to manage

numerous clients at the same time. Also, a single client can connect to

numerous servers at a single timestamp, where each server provides a

different set of services to that specific client.

The following figure represents how the files are sent over the Internet.

The file will be split into small packets; IP address is added to the packets

and transmitted. At the receiving end the packets are rearranged in order

before presenting them to the receiver.

Fig 1.3. Diagram representing how files are sent over Internet

1.3WORLD WIDE WEB

Today everyone knows of the World Wide Web and very many people

around the world make daily use of its facilities. It is hard to imagine what

it must have been like before the Web became such an important part of

our lives.

Introduction to HTML

5 Self-Instruction Manual

Notes

But it was only in 1989 that Tim Berners-Lee, based at the European

Laboratory for Particle Physics (CERN), in looking for a solution to the

management and sharing of the large amounts of scientific information his

colleagues created. He wrote a proposal for a large online hypertext

database that by 1991 had become what we now call the World Wide Web.

Thus the Web began as a means of improving information sharing and

document handling between the research scientists at CERN and

throughout the world.

It was designed to allow pages containing hypertext to be stored in a way

that allowed other computers access to these pages. It was probably not

until about the mid-1990s, however, that the Web began to really gain in

popularity. It is no exaggeration to say that the Web has now become quite

ubiquitous.

Fig 1.4. World Wide Web

The World Wide Web (WWW) is most often called the web. The World

Wide Web is a collection of documents and services, distributed across the

Internet and linked together by hypertext links. The web is therefore a

subset of the Internet, not the same thing.All the computers use a

communication standard called Hyper Text Transfer Protocol (HTTP).

 Web information is stored in documents called Web

Pages.

Example : www.alagappauniversity.ac.in/dde.html

 Collection of Web Pages with information on a subject is

called Web Site.

Example : www.alagappauniversity.ac.in

 Web pages are nothing but files stored on computers

called Web servers.

Example : Google Web Server (GWS), Yahoo Server

 Computers reading the Web pages are called Web clients.

Example : Users device such as Computer, Laptops,

Smart Phones etc

Introduction to HTML

6 Self-Instruction Manual

Notes

 Web clients view the pages with a program called a Web

browser.

Fig 1.5. Web Browsers

The functioning of the Web is dependent upon many things, but perhaps

the three most important are:

 First, that the web clients (browsers) are multiprotocol clients,

capable of interacting with several different kinds of servers

 Second, that there is a common addressing scheme that makes

it possible to unambiguously identify what you want and

where to find it, anywhere on the web

 A URL (Uniform Resource Locator) gives the address

or location of any specific website. Each URL defines

the path that will transmit the document, the Internet

protocol being used, and the server on which the

website is located.

 Each Internet address is translated into a series of

numbers called an IP address. A domain name is used

by an organisational entity to identify its website and is

based on the Domain Name System (DNS) hierarchy

 Finally, the fact that web browsers are extensible and therefore

capable of handling a virtually unlimited variety of resource

types.

Much of what is available on the web consists of web documents, which

are often (somewhat misleadingly) called ―home pages.‖A home page

appears to be a single entity, but is actually made up of a number of

separate and distinct files, which may incorporate one or more of the

following, in different configurations:

Introduction to HTML

7 Self-Instruction Manual

Notes

 Text

 Graphics

 Animation

 Audio

 Video

 Hyperlinks (text or graphics which lead you from document to

document)

 Interactive element, including specially embedded programs

such as:

o Plug-ins (downloadable sets of software that enable the

user to use part of a web document.)

The base document of a home page is a file which is mostly text,

containing commands (―markup”) which determines how the above

elements are configured. The rules governing this markup form a simple

programming language called ―HTML”.

1.4HTML

HTML, otherwise known as HyperText Markup Language, is the standard

markup language used to create Web pages. HTML was originally

developed by Tim Berners-Lee while at CERN, and popularized by the

Mosaic browser developed at NCSA. During the course of the 1990s it has

blossomed with the explosive growth of the Web. During this time, HTML

has been extended in a number of ways. The Web depends on Web page

authors and vendors sharing the same conventions for HTML. This has

motivated joint work on specifications for HTML.HTML 2.0 (November

1995) was developed under the aegis of the Internet Engineering Task

Force (IETF) to codify common practice in late 1994.HTML 3.0 (1995)

proposed much richer versions of HTML. The versions of HTML are listed

below

Version Year

HTML 1991

HTML 2.0 1995

HTML 3.2 1997

HTML 4.01 1999

XHTML 2000

HTML5 2014

HTML also lets designers to create hyperlinks. Hyperlinks are areas of

text, images, buttons, orother parts of a page where the viewer can click to

navigate to additional content. Clicking alink can open a new web page,

site, document, video, or animation.

 Hypertext allows words (or other objects) in one document to

be linked to other documents. It provides a dynamic means of

organising and accessing information where pages of

information are connected together by hypertext links.

Introduction to HTML

8 Self-Instruction Manual

Notes

Structure of an HTML document

All HTML documents follow the same basic structure. They have the root

tag as <html>, which contains <head> tag and <body> tag.

Fig 1.6. HTML Document Structure

 The head tag is used for control information by the browser

 The body tag contains the actual user information that is to be

displayed on the screen.

Editors

HTML and CSS use text as their foundation. Because of this, even the

most simple texteditor, such as Notepad on the PC, or TextEdit on the Mac

is capable of creating webpages.In addition to text editors, there are also

fully featured web editors and designtools, such as Adobe Dreamweaver

and Microsoft Expression Web. These are WYSIWYGtools (―What You

See Is What You Get‖) that provide a visual layout environment,

codeediting, along with website management tools.

Windows Notepad can be found on any Windows system in the

Accessories panel. A HTML document can be created by following these

steps:

1. Choose Start  Programs  Accessories  Notepad, and when

the Notepad window appears, choose File  New.

By default, the file is saved in the text (.txt) format and so any

HTML tags that the file contains cannot be interpreted by a web

browser.

2. In Notepad, select File  Save As. Change the file extension

from .txt to .html in the file name field.

3. Specify ―All Files‖ in the Save as type field. Set the Encoding

value to UTF-8instead of ANSI; this is the necessary encoding

for HTML pages.

4. Click the Save button.

Introduction to HTML

9 Self-Instruction Manual

Notes

HTML Elements

HyperText Markup Language is designed to specify the logical

organisation of a document, with important hypertext extensions. It

consists of series of elements. The elements tell the browser how to display

the content. The HTML elements are represented by tags. The browsers

do not display the HTML tags, but use them to depict the content of the

page.

The detailed rules for HTML (the names of the tags/elements, how they

can be used) are defined using another language known as the Standard

Generalized Markup Language, or SGML.

HTML allows you to mark selections of text as titles or paragraphs, and

then leaves the interpretation of these marked elements up to the browser.

The web browser looks at the tagsand displays them accordingly.

A simple example of HTML element is:

<p>Do you want to have lunch?</p>

The text to be displayed,Do you want to have lunch?, is wrapped

by two tagsindicating that it is a paragraph. The first tag is the opening tag

<p> and the second is theclosing tag </p>. These tags are generally not

displayed in the browser, which reads the textfrom the web server and

formats the text as a paragraph to display on the viewer‘s screen.

Example1.1:

<html>

<head>
<title>
Basic HTML document
</title>
</head>

<body>
<h1>
Welcome to the world of Web Technologies
</h1>
<p>
A sample html program
</p>
</body>
</html>

Besides head and body tag, there are some other tags like title, which is a

sub tag of head, which displays the information in the title bar of the

browser. <h1> is used to display the line in its own format i.e., bold with

some big font size. <p> is used to write the content in the form of

paragraph.

Introduction to HTML

10 Self-Instruction Manual

Notes

Points to be noted

 Tags are delimited by angled brackets.

 They are not case sensitive i.e., <head>, <HEAD> and <Head> is

equivalent.

 If a browser not understands a tag it will usually ignore it.

 Some characters have to be replaced in the text by escape

sequences.

 White spaces, tabs and newlines are ignored by the browser.

1.5XML

The XML stands for Extensible Markup Language (XML). It is a general-

purpose specification for creating custom markuplanguages. It is classified

as an extensible language because it allows its users to define their

ownelements. Its primary purpose is to facilitate the sharing of structured

data across different informationsystems, particularly via the Internet. It is

used both to encode documents and to serialize data.

 XML is software and hardware independent.

 XML was designed to store and transport data.

 XML was designed to be both human- and machine-readable.

Example1.2:

<?xml version="1.0"?>
<note>
 <to>Teddy</to>
 <from>Osito</from>
 <heading>Reminder</heading>
 <body>Internal Assessment this week!</body>
</note>

The XML above is quite self-descriptive

 It has sender information.

 It has receiver information

 It has a heading

 It has a message body.

HTML and XML look similar, because they are both SGML languages

(SGML - Standard GeneralizedMarkup Language).

Check Your Progress 1

1. What do you mean by client server computing?

2. What is atag?

3. Name the parts of the HTML document.

Introduction to HTML

11 Self-Instruction Manual

Notes

XML vs HTML

XML as well as HTML were designed with different goals

 XML was designed to carry data – with focus on what data is

 HTML was designed to display data – with focus on how data

looks

 XML tags are not predefined – but user defined

 HTML tags are predefined

 XML is used to describe the structure of the document.

 HTML is used to describe the way in which the document is

presented.

<?xml version=”1.0”?>
<college>

 <studdetail>

 <regno>20191001</regno>
 <name>
 <firstname>AADHI</firstname>
 <lastname>SUNDAR</lastname>
 </name>
 <country name="INDIA"/>
 <degree>M.Sc</degree>

 </studdetail>

</college>

The first line is the processing instruction which tells applications how to

handle the XML. It is also serves as version declaration and says that the

file is XML

Valid or Well Formed XML

XML documents may be either valid or well formed.

A well-formed XML document is one which follows all of the rules of

XML.

 Tags are matched

 Tags do not overlap

 Empty elements should be ended properly

 The document should contain an XML declaration.

A valid XML document has its own DTD. A DTD (Document Type

Definition) defines what tags are legal and where they can occur in the XML.

XML is said to be well structured if it follows the rules defined in DTD.

There are many XML parsers that check the document and it‘s DTD.

Introduction to HTML

12 Self-Instruction Manual

Notes

1.6BASIC HTML TAGS

In any programming environment the first program while learning the

language is ‗Hello world‘ program. This program is used to check the

programming environment. It will give an idea to the user about the

program editor, how to save theweb page and how to open the web page in

the browser. It is one of the easiest codes used ever, but still we have to run

this source code for better understanding the programming environment.

1. For creating any HTML source code, we need to open the text

editor for writing the code.

2. Notepad is the most commonly used editor for creating HTML

source code. Select the Notepad option from the Start Menu.

Or

Start  Programs  Accessories  Notepad, and when the

Notepad window appears, choose File  New

3. In the opened notepad type the following code.

<!DOCTYPE html>
<html>
<head>
<title>First Web Page</title>
</head>
<body>
<h1>Hello World…!</h1>
<p>HAI...</p>
</body>
</html>

4. Save the file by click the Save option from the file menu

The Save dialogue box will appear as show below:

Introduction to HTML

13 Self-Instruction Manual

Notes

5. Choose the directory, give appropriate file name with extension

.html and change the Save as type to ‗All files‘

6. The created web page will be saved in the selected location

7. To view the web page created, double click the file name. The web

page will be opened in the default browser. The commonly used

browsers are Internet explorer, Chrome, Opera, NetScape.

Introduction to HTML

14 Self-Instruction Manual

Notes

8. The output of the first web page is shown below

9. In case if the user needs to modify the HTML source, the source

can be changed using the editor. To view the updated web page we

need to press Refresh or F5 key in the browser.

<!DOCTYPE html>
<html>
<head>
<title>First Web Page</title>
</head>
<body>
<h1>Hello World…!</h1>
<p>HAI...</p>

<p>This is my First Web Page </p>
</body>
</html>

10. The contents of the web page will be refreshed to reflect the

changes in the source.

Introduction to HTML

15 Self-Instruction Manual

Notes

Example 1.3:

<!DOCTYPE html>
<html>
<head>
<title>Page Title</title>
</head>
<body>
<h1>My First Heading</h1>
<p>My first paragraph.</p>
</body>

 The <!DOCTYPE html> declaration defines this document to be

HTML5.

 The <html> element is the root element of an HTML page.

 The <head> element contains meta information about the

document.

 The <title> element specifies a title for the document.

 The <body> element contains the visible page content.

 The <h1> element defines a large heading.

 The <p> element defines a paragraph.

Comments

Comments in HTML documents start with <! and end with >. Each

comment can contain as many lines of text as you like. If comment is

having more lines, then each line must start and end with -- and must not

contain -- within its body.

<html>
<! Single line Comment >

<! -- this is a comment line - -
-- which can have more lines - ->

Introduction to HTML

16 Self-Instruction Manual

Notes

HTML Elements

An HTML element usually consists of a start tag and an end tag, with the

content inserted in between:

<tagname>Content goes here...</tagname>

The HTML element is everything from the start tag to the end tag:

<p>My first paragraph.</p>

HTML elements can be nested (elements can contain elements).All HTML

documents consist of nested HTML elements.

<body>
 <h1>My First Heading</h1>
 <p> My first paragraph </p>
</body>

Empty HTML Elements

HTML elements with no content are called empty elements.
 is an

empty element without a closing tag. The
 tag defines a line break.

Example 2:

<p>This is a paragraph without a line break.</p>

Output

This is a paragraph without a line break.

<p>This is a
 paragraph with a line break.</p>

Output

This is a
paragraph with a line break.

HTML Attributes

Attributes provide additional information about HTML elements.

 All HTML elements can have attributes

 Attributes provide additional information about an element

 Attributes are always specified in the start tag

 Attributes usually come in name/value pairs like: name="value"

Introduction to HTML

17 Self-Instruction Manual

Notes

The following piece of code represents the values assigned to text

attribute for the body tag and align attribute for h1 tag.

<body text=”blue”>

<h1 align=”center”>

Example 1.4:

<html>
<body text=”blue”>
<center>
<h1 align=”center”> Java - The web programming
<h2 align=”center”> Java - The web programming
<h3 align=”center”> Java - The web programming
<h4 align=”center”> Java - The web programming
<h5 align=”center”> Java - The web programming
<h6 align=”center”> Java - The web programming
</center>
</body>
</html>

Body tag :

Body tag contain some attributes such as bgcolor, background etc.

bgcolor is used for background color, which takes background color

name or hexadecimal number and #FFFFFF and background attribute

will take the path of the image which can be placed as the background

image in the browser.

<body bgcolor=”#F2F3F4”
background= “c:\image1.gif”>

The following code will set the background color, text color and the size of

the font to be displayed in the web page.

Introduction to HTML

18 Self-Instruction Manual

Notes

Example1.5:

<html>
<head>
<title> example </title>
</head>

<body bgcolor=“black” text=“white”>
<basefont size=7>

This is where you would include the text and
images on your web page.
</body>

</html>

Paragraph tag:

Most text is part of a paragraph of information. Each paragraph is aligned

to the left, right or center of the page by using an attribute called as align.

<p align=”left” | “right” | “center”>

Heading tag:

HTML is having six levels of heading that are commonly used. The largest

heading tag is <h1>. The different levels of heading tag besides <h1> are

<h2>, <h3>, <h4>, <h5> and <h6>. These heading tags also

contain attribute called as align.

<h1 align=”left” | “right” | “center”>

hr tag:

This tag places a horizontal line across the system. These lines are used to

break the page. This tag also contains attribute i.e., width which draws the

horizontal line with the screen size of the browser. This tag does not

require an end tag.

<hr width=”50%”>.

font tag:

This sets font size, color and relative values for a particular text.

This text will be displayed using courier font

Introduction to HTML

19 Self-Instruction Manual

Notes

Text Formatting Tags

There are several tags to format the text.The following table describes

some ofthe ways of formatting the text in the HTML document.

Tag Text Format

 Bold text

<i> Italic text

<u> Underline text

 Important text

<strike> Strike through text

 Emphasized text

<mark> Marked text

<small> Small text

 Deleted text

<ins> Inserted text

<sub> Subscript text

<sup> Superscript text

Example 1.6:

<html>
<head>
<title>FORMATTING TAG</title>

<body bgcolor="pink">
<font color="blue" size="6" face="Times New
Roman">
<center>FORMATTING TAG</center>

<p>I am bold

<p>I am <i> italic </i>

<p>I am<u> underlined </u>

<p>The following word uses
<strike> strike tyle</strike>

<p>

The following word uses
<tt> monospaced</tt>

<p>The following word uses a<sup>
superscript</sup>

<p>The following word uses a
_{subscript}

<p>I want to drink cold
<ins> coffee </ins>

<p>I want to drink milk
<ins> shake </ins>

Introduction to HTML

20 Self-Instruction Manual

Notes

<p>The following word uses a <big> big </big>
typeface.

<p>The following word uses a <small> small
</small> typeface.

<div id="menu" align="middle" >
HOME
CONTACT |
ABOUT
</div>

<div id="content" align="left" bgcolor="white">
<h5>Content Articles</h5>
<p>Actual content goes here.....
</div>

<p>This is the example of
span tag
and the
div tag
along with CSS

</p>

</body>
</head>
</html>

Some other text formats are list below

Tag Text Format

<abbr> Defines an abbreviation or acronym

<address>

Defines contact information for the

author/owner of a document

<bdo> Defines the text direction

<blockquote>

Defines a section that is quoted from

another source

<cite> Defines the title of a work

<q> Defines a short inline quotation

Character Entity References

Character entity references have the format &name; where name is a case-

sensitive alphanumeric string.These are character escape sequence which

are required if you want to display special characters that HTML uses as

control sequences.

Introduction to HTML

https://www.w3schools.com/tags/tag_abbr.asp
https://www.w3schools.com/tags/tag_abbr.asp
https://www.w3schools.com/tags/tag_abbr.asp
https://www.w3schools.com/tags/tag_abbr.asp
https://www.w3schools.com/tags/tag_address.asp
https://www.w3schools.com/tags/tag_bdo.asp
https://www.w3schools.com/tags/tag_blockquote.asp
https://www.w3schools.com/tags/tag_cite.asp
https://www.w3schools.com/tags/tag_q.asp

21 Self-Instruction Manual

Notes

Entity References Character

 Space

& &

< <

> >
" “

' ‘

1.7HYPERLINKS

HTML links are called as hyperlinks. Hyperlinks can be created using the

anchor tag.

 The user can click on a link and jump to another document or other

portion of the same document.

 When the user moves the mouse over a link, the mouse arrow will

turn into a little hand.

 A link does not have to be text. It can be an image or any other

HTML element.

Anchor tag is used to link two HTML pages and is represented by <a>.
The simple syntax of the anchor tag is given below.

link text

href is an attribute which is used for giving the path of a file which the

user wants to link.

Two steps are necessary to create an anchor.

1. Create the anchor itself

2. Create a link to the anchor from another point in the document

By default, links will appear as follows in all browsers:

 An unvisited link is underlined and blue

 A visited link is underlined and purple

 An active link is underlined and red

In addition to the href, the following table lists the most commonly used

attributes of the anchor tag.

Attribute Value Description

href URL Specifies the URL of the page the link

goes to

name section_name Specifies the name of an anchor

target _blank

_parent

_self

_top

framename

Specifies where to open the linked

document

Introduction to HTML

22 Self-Instruction Manual

Notes

download filename Specifies that the target will be

downloaded when a user clicks on the

hyperlink

rel alternate

author

bookmark

external

help

license

next

nofollow

noreferrer

noopener

prev

search

tag

Specifies the relationship between the

current document and the linked document

type media_type Specifies the media type of the linked

document

Example for name attribute:

Chapter Two

….
…

Chapter 2

Introduction to HTML

https://www.w3schools.com/tags/att_a_download.asp

23 Self-Instruction Manual

Notes

Example 1.7:

Index.html

<html>
<body>

<h1 style="color:blue;">WELCOME</h1>
<center>
<h1><u>

Dictionary using phrase
</u></h1>
</center>

<h2>

once in a blue moon
</h2>

<h2>

Friend at court
</h2>

<h2>

Fit as a fiddle
</h2>

</body>
</html>

phrase1.html

<html>
<body bgcolor="red">

<h1>
Answer: Rarely
</h1>

</body>
</html>

phrase2.html

<html>
<body bgcolor="pink">

<h1>
Answer: Influential person to help
</h1>

Introduction to HTML

24 Self-Instruction Manual

Notes

</body>
</html>

phrase3.html

<html>
<body bgcolor="green">
<h1>
Answer: In a perfect condition
</h1>
</body>
</html>

1.8ANSWERS TO CHECK YOUR PROGRESS

1. In this client-server model,

i. Servers – distributes and controls the majority of the

resources as well as services for clients

ii. Clients – make use of the resources and services offered

by the server

2. The elements tell the browser how to display the content. The

HTML elements are represented by tags.

3. The parts of the HTML document

i. Head part

ii. Body part

4. The XML stands for Extensible Markup Language (XML). It is a

general-purpose specification for creating custom markuplanguages.

It is classified as an extensible language because it allows its users to

define their ownelements. Its primary purpose is to facilitate the

sharing of structured data across different informationsystems,

particularly via the Internet

5. Attributes provide additional information about HTML elements.

i. All HTML elements can have attributes

ii. Attributes provide additional information about an element

iii. Attributes are always specified in the start tag

iv. Attributes usually come in name/value pairs like: name="value"

6. The anchor tag is used to link two HTML documents

Check Your Progress 2

1. What is XML?

2. What are attributes?

3. State the purpose of anchor tag.

Introduction to HTML

25 Self-Instruction Manual

Notes

1.9LET US SUM UP

Internet is the collection of networks connected via the public backbone

and communicating across networks using TCP/IP.

The World Wide Web (WWW) is most often called the web. The World

Wide Web is a collection of documents and services, distributed across the

Internet and linked together by hypertext links.

Web information is stored in documents called Web Pages

Collection of Web Pages with information on a subject is called Web Site

Web pages are nothing but files stored on computers called Web servers

Computers reading the Web pages are called Web clients

Web clients view the pages with a program called a Web browser

A URL (Uniform Resource Locator) gives the address or location of any

specific website. Each URL defines the path that will transmit the

document, the Internet protocol being used, and the server on which the

website is located

Each Internet address is translated into a series of numbers called an IP

address. A domain name is used by an organisational entity to identify its

website and is based on the Domain Name System (DNS) hierarchy

Markupdetermines how the above elements in the web page are configured

Hyperlinks are areas of text, images, buttons, or other parts of a page where

the viewer can click to navigate to additional content

The detailed rules for HTML (the names of the tags/elements, how they

can be used) are defined using another language known as the Standard

Generalized Markup Language, or SGML

HTML document consists of series of elements. The elements tell the

browser how to display the content. The HTML elements are represented

by tags.

The XML stands for Extensible Markup Language (XML). It is a general-

purpose specification for creating custom markup languages.

1.10SELF-ASSESSMENT EXERCISES

Short Questions

1. Define Internet.

2. What is an URL?

3. What is the need for DNS?

4. State the difference between HTML and XML

5. List the attributes of anchor tag.

Detail Questions

Introduction to HTML

26 Self-Instruction Manual

Notes

1. Describe the evolution of Internet

2. Write short notes on WWW.

3. Describe the structure of HTML document.

4. Brief about XML

5. Discuss about elements and attributes in HTML

6. With suitable examples explain the formatting tags of HTML

7. Explain about the anchor tag

1.11SUGGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. www.w3schools.com

27 Self-Instruction Manual

Notes

UNIT- 2HTML TAGS

Structure

2.0 Introduction

2.1 Objectives

2.2 Lists

2.3 Colors

2.4 Images

2.5 Tables

2.6 Multimedia Objects

2.7 Answers to Check Your Progress

2.8 Let us Sum Up

2.9 Self-Assessment Exercises

2.10 Suggested Readings

2.0 INTRODUCTION

A static web page also known as flat page or stationary page is a web

page that is delivered to the user's web browser exactly as stored, in

contrast to dynamic web pages which are generated by a web application.

This unit will describe the elements used to create static web pages. Lists,

images, tables and multimedia objects are the most commonly used

elements of a static as well as dynamic web page.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Learn different types of listing options in HTML

 Understand how to include images in a web page

 Learn how to handle tables and multimedia objects

 Create static web pages using HTML

2.2 LISTS

One of the most effective ways of structuring a web site is to use lists. Lists

provides straight forward index in the web site. HTML provides three

types of list i.e., bulleted list, numbered list and a definition list. Lists can

be easily embedded easily in another list to provide a complex but readable

structures. The different tags used for listing are as follows.

 − An unordered list. This will list items using plain bullets.

 − An ordered list. This will use different schemes of numbers

to list user items.

 <dl> − A definition list. This arranges user items in the same way as

they are arranged in a dictionary.

HTML Tags

28 Self-Instruction Manual

Notes

Unordered Lists

An unordered list is a collection of related items that have no special order

or sequence. This list is created by using HTML tag. Each item in

the list is marked with a bullet.

Example 2.1:

<html>
<head>
<title>An Unordered List</title>
</head>

<body>

Beetroot
Ginger
Potato
Radish

</body>
</html>

Output

An Unordered List

 Beetroot

 Ginger

 Potato

 Radish

By default the bullet is of type disc. Following are the other possible

options for the unordered list types

<ul type = "disc">
<ul type = "square">
<ul type = "circle">

Output for type=”square”

An Unordered List:

 Beetroot

 Ginger

 Potato

 Radish

Output for type=”circle”

An Unordered List:

o Beetroot

o Ginger

o Potato

o Radish

HTML Tags

29 Self-Instruction Manual

Notes

Ordered Lists

If the user wants to display the items in a numbered list instead of bulleted,

then HTML ordered list will be used. This list is created by using

tag. The numbering starts at one and is incremented by one for each

successive ordered list element tagged with .

Example 2.2:

<!DOCTYPE html>
<html>
<head>
<title>HTML Ordered List</title>
</head>
<body>

Beetroot
Ginger
Potato
Radish

</body>
</html>

Output

1. Beetroot

2. Ginger

3. Potato

4. Radish

By default, it is a number. Following are the other possible options

<ol type = "1"><! Default-Case Numerals>

<ol type = "I"><! Upper-Case Numerals>

<ol type = "i"><! Lower-Case Numerals>

<ol type = "A"><! Upper-Case Letters>

<ol type = "a"><! Lower-Case Letters>

Output for type=”I”

I. Beetroot

II. Ginger

III. Potato

IV. Radish

The start attribute of tag is used to specify the starting number of the

type specified.

<ol type = "i" start = "4"><! Starts with iv>

HTML Tags

30 Self-Instruction Manual

Notes

Output for type=”i” start=”4”

iv. Beetroot

v. Ginger

vi. Potato

vii. Radish

Definition Lists

HTML and XHTML supports a list style which is called definition list

where entries are listed like in a dictionary or encyclopaedia. The

definition list is the ideal way to present a glossary, list of terms, or other

name/value list.

Definition List makes use of following three tags.

<dl><! Defines the start of the list>
 <dt><! A term>
 <dd><! Term definition>
</dl><! Defines the end of the list>

Example 2.3:

<!DOCTYPE html>
<html>
<head>
<title>HTML Definition List</title>
</head>
<body>
<dl>
<dt>HTML</dt>
<dd>This stands for Hyper Text Markup Language
</dd>
<dt>HTTP</dt>
<dd>This stands for Hyper Text Transfer Protocol
</dd>
</dl>
</body>
</html>

Output

HTML

This stands for Hyper Text Markup Language

HTTP

This stands for Hyper Text Transfer Protocol

2.3COLORS

Color can be used for background, elements and links. HTML colors are

specified using predefined color names, or HEX, RGB,HSL, RGBA,

HSLA values.

HTML Tags

31 Self-Instruction Manual

Notes

To change the color of links or of the page background hexadecimal

(HEX)values are placed in the <body> tag.

<body bgcolor = “#nnnnnn” text = “#nnnnnn” link=
“#nnnnnn” vlink= “#nnnnnn” alink = “#nnnnnn”>

The vlink attribute sets the color of links visited recently, alink the

color of a currently active link. The six figure hexadecimal values must be

enclosed in double quotes and preceded by a hash(#).

In the six figure hexadecimal #rrggbb values, first two figures represent

the red value, next two figures represent the green value and the last two

figures represent the blue value. The following figure shows some

example color values.

Fig 2.1. Color Values

The following figure shows some example color names.

Tomato

Orange

DodgerBlue

MediumSeaGreen

Gray

SlateBlue

Violet

Fig 2.2. Color Names

HTML Tags

32 Self-Instruction Manual

Notes

Example 2.4:

<!DOCTYPE html>
<html>
<head>
<title>HTML Definition List</title>
</head>
<body>
<h1 style="background-color:DodgerBlue;">Hello
World</h1>

<p style="background-color:Tomato;">
Color can be used for background, elements and
links. HTML colors are specified using predefined
color names, or RGB, HEX, HSL, RGBA, HSLA values.
This paragraph will be displayed with tomato as
its background color</p>

</body>
</html>

Output

Hello World

Color can be used for background, elements and links. HTML colors are

specified using predefined color names, or RGB, HEX, HSL, RGBA,

HSLA values. This paragraph will be displayed with tomato as its

background color

Example 2.5:

<h1 style="border:2px solid Tomato;">
Hello World</h1>
<h1 style="border:2px solid DodgerBlue;">
Hello World</h1>

Output

Hello World

Hello World

In HTML, a color can be specified as an RGB value, using this formula:

rgb(red, green, blue)

Each parameter (red, green, blue) defines the intensity of the color

between 0 and 255.

HTML Tags

33 Self-Instruction Manual

Notes

For example, rgb(255, 0, 0) is displayed as red, because red is set to

its highest value (255) and the others are set to 0.

To display black, set all color parameters to 0, rgb(0, 0, 0).

To display white, set all color parameters to 255, rgb(255, 255, 255).

The mixing of the RGB values is shown below:

rgb(255, 99, 71)

In HTML, a color can be specified using hue, saturation, and lightness

(HSL) in the form:

hsl(hue, saturation, lightness)

 Hue is a degree on the color wheel from 0 to 360. 0 is red, 120

is green, and 240 is blue.

 Saturation is a percentage value, 0% means a shade of gray,

and 100% is the full color.

 Lightness is also a percentage, 0% is black, 50% is neither

light or dark, 100% is white

Example

hsl(0, 100%, 50%)

hsl(240, 100%, 50%)

hsl(147, 50%, 47%)

hsl(300, 76%, 72%)

hsl(39, 100%, 50%)

hsl(248, 53%, 58%)

HSLA color values are an extension of HSL color values with an alpha

channel - which specifies the opacity for a color.

An HSLA color value is specified with:

hsla(hue, saturation, lightness, alpha)

The alpha parameter is a number between 0.0 (fully transparent) and 1.0

(not transparent at all)

HTML Tags

34 Self-Instruction Manual

Notes

Example

hsla(9, 100%, 64%, 0)

hsla(9, 100%, 64%, 0.2)9, 100%, 64%, 0.6)

hsla(9, 100%, 64%, 0.8)

hsla(9, 100%, 64%, 1)

2.4IMAGES

The tag defines an image in an HTML page.Actually images are

not technically inserted into an HTML page; images are linked to HTML

pages. The tag creates a holding space for the referenced image.

<img src=”URL” alt=”text” height=”n” width=”n”
align = “top” | “center” | “bottom” >

The tag has two required attributes: src and alt.The other

attributes used for the image tag are height, width and align.

Example 2.6:

<html>
<head>
<title>basictags</title>
</head>

<body bgcolor="pink">

<marquee><h1><u>
flowers</u></h1>
</marquee>

<h2>lotus is our national flower
</h2>

<img src="C:\lotusflower.jpg" width="250"
height="250">

<h3>
have a nice
day!!!!!!!!!!!!!</h3>

</body>
</html>

HTML Tags

35 Self-Instruction Manual

Notes

Output

Note:

To link an image to another document, simply nest the tag inside

<a> tags.

2.5TABLES

The HTML tables allow web authors to arrange data like text, images,

links, other tables, etc. into rows and columns of cells.

The HTML tables are created using the <table> tag in which the <tr>

tag is used to create table rows and <td> tag is used to create data cells.

The elements under <td> are regular and left aligned by default

Example 2.7:

<html>
<head>
<title>HTML Tables</title>
</head>

<body>
<table border = "1">
<tr>
<td>Row 1, Column 1</td>
<td>Row 1, Column 2</td>
</tr>

<tr>
<td>Row 2, Column 1</td>
<td>Row 2, Column 2</td>
</tr>
</table>

Check Your Progress 1

1. What are the types of listings used in HTML?

2. Expand RGB, HEX and HSL.

3. State the purpose of ‗alt‘ attribute in image tag.

HTML Tags

36 Self-Instruction Manual

Notes

</body>
</html>

Output

Here, the border is an attribute of <table> tag and it is used to put a

border across all the cells. If user do not need a border, then user can use

border = "0".

Table Heading

Table heading can be defined using <th> tag. Headings, which are defined

in <th> tag are centered and bold by default.

Example 2.8:

<html>
<head>
<title>HTML Table Header</title>
</head>
<body>

<table border = "1">
<tr>
<th>Name</th>
<th>Salary</th>
</tr>

<tr>
<td>Ramesh Raman</td>
<td>5000</td>
</tr>

<tr>
<td>Shabbir Hussein</td>
<td>7000</td>
</tr>
</table>
</body>
</html>

Output

HTML Tags

37 Self-Instruction Manual

Notes

Cellpadding and Cellspacing Attributes

Two attributes called cellpadding and cellspacingare used to adjust

the white space in the table cells. The cellspacing attribute defines

space between table cells, while cellpadding represents the distance

between cell borders and the content within a cell.

Example 2.9:

<html>
<head>
<title>HTML Table Cellpadding</title>
</head>

<body>

<table border = "1" cellpadding = "5"
cellspacing = "5">

<tr>
<th>Name</th>
<th>Salary</th>
</tr>

<tr>
<td>Ramesh Raman</td>
<td>5000</td>
</tr>

<tr>
<td>Shabbir Hussein</td>
<td>7000</td>
</tr>

</table>
</body>
</html>

Output

Colspan and Rowspan Attributes

colspan attribute is used if the user wants to merge two or more columns

into a single column. Similarlyrowspanis used to merge two or more

rows.

HTML Tags

38 Self-Instruction Manual

Notes

Example 2.10:

<html>
<head>
<title>HTML Table Colspan/Rowspan</title>
</head>

<body>
<table border = "1">
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>

<tr>
<td rowspan = "2">Row 1 Cell 1</td>
<td>Row 1 Cell 2</td>
<td>Row 1 Cell 3</td>
</tr>

<tr>
<td>Row 2 Cell 2</td>
<td>Row 2 Cell 3</td>
</tr>

<tr>
<td colspan = "3">Row 3 Cell 1</td>
</tr>

</table>
</body>
</html>

Output

Tables Backgrounds

Usercan set table background and border color using one of the following

attributes

 bgcolor attribute − To set background color for whole table

or just for one cell.

 background attribute − To set background image for whole

table or just for one cell.

 User can also set border color also using bordercolor

attribute.

HTML Tags

39 Self-Instruction Manual

Notes

Example 2.11:

<head>
<title>HTML Table Background</title>
</head>
<body>
<table border = "1" bordercolor = "green"
bgcolor = "yellow">

<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>

<tr>
<td rowspan = "2">Row 1 Cell 1</td>
<td>Row 1 Cell 2</td>
<td>Row 1 Cell 3</td>
</tr>

<tr>
<td>Row 2 Cell 2</td>
<td>Row 2 Cell 3</td>
</tr>

<tr>
<td colspan = "3">Row 3 Cell 1</td>
</tr>

</table>
</body>
</html>

Output

Here is an example of using background attribute. Here we will use an

image available in /images directory.

Example 2.12:

<html>
<head>
<title>HTML Table Background</title>
</head>

HTML Tags

40 Self-Instruction Manual

Notes

<body>
<table border = "1" bordercolor = "green"
background = "/images/test.png">
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>

<tr>
<td rowspan = "2">Row 1 Cell 1</td>
<td>Row 1 Cell 2</td><td>Row 1 Cell 3</td>
</tr>

<tr>
<td>Row 2 Cell 2</td>
<td>Row 2 Cell 3</td>
</tr>

<tr>
<td colspan = "3">Row 3 Cell 1</td>
</tr>
</table>
</body>
</html>

Output

Nested Tables

Not only tags but tables also nested in a web page.

Example 2.13:

<html>
<head>
<title>HTML Table</title>
</head>
<body>
<table border = "1" width = "100%">

<tr>
<td>
<table border = "1" width = "100%">

HTML Tags

41 Self-Instruction Manual

Notes

<tr>

<th>Name</th>
<th>Salary</th>
</tr>

<tr>
<td>Ramesh Raman</td>
<td>5000</td>
</tr>

<tr>
<td>Shabbir Hussein</td>
<td>7000</td>
</tr>

</table>
</td>
</tr>

</table>
</body>
</html>

Output

2.6MULTIMEDIA OBJECTS

The following are the major components of any multimedia system

 Text

 Graphics

 Animation

 Audio

 Video

These multimedia objects can be embedded into the web page with the

help of the following tags.

 <audio controls
 <video>

 <bgsound>

 etc

HTML Tags

42 Self-Instruction Manual

Notes

Example 2.14:

<html>
<head>
<title>HTML embed Tag</title>
</head>
<body>

<bgsound src = "/html/userrfile.mid">
<noembed>

 </noembed>
</bgsound>

</body>
</html>

Example 2.15:

<html>
<body>
<audio controls>
<source src="horse.ogg" type="audio/ogg">
<source src="horse.mp3" type="audio/mpeg">
</audio>
</body>
</html>

Output

Example 2.16:

<html>
<head>
</head>
<body>

<center>
<h1>Html Image Example</h1>
<img src="tenor.gif" alt="Smiley" width="42"
height="42">

<h1>Marquee Text</h1>

HTML Tags

43 Self-Instruction Manual

Notes

<marquee scrollamount="10" direction="left"
behavior="scroll">
Sample Marquee Text </marquee>

<h2>Playing videos in Html</h2>

<video width="320" height="240" controls>
<source src="SampleVideo.mp4" type="video/mp4">
<source src="movie.ogg" type="video/ogg">
Your browser does not support the video tag.
</video>

<h3>playing-audio in Html</h3>

<audio controls>
<source src="rain.mp3" type="audio/mpeg">
Your browser does not support the audio element.
</audio>

</center>
</body>

<html>

Output

HTML 4 introduces the <object> element, which offers an all-purpose

solution to generic object inclusion. The <object> element allows HTML

authors to specify everything required by an object for its presentation by a

user agent.

A HTML document can be embedded in another HTML document itself

<object data = "data/test.htm" type = "text/html"
width = "300" height = "200">
alt : test.htm
</object>

HTML Tags

44 Self-Instruction Manual

Notes

APDFfile can be embedded in another HTML document

<object data = "data/test.pdf" type =
"application/pdf" width = "300" height = "200">
alt : test.htm
</object>

2.7ANSWERS TO CHECK YOUR PROGRESS

1. The three types of lists used in HTML are,

i. Unordered list

ii. Ordered list

iii. Definition list

2. The elements tell the browser how to display the content. The

HTML elements are represented by tags.

3. The alt attribute is used to display the text if the image is not properly opened.

4. The HTML tables allow web authors to arrange data like text,

images, links, other tables, etc. into rows and columns of cells

5. colspan attribute is used if the user wants to merge two or more

columns into a single column

6. th is used to represent header cells whereas td is used to represent

data cells.

2.8LET US SUM UP

The different tags used for listing are as follows.

 − An unordered list. This will list items using plain bullets.

 − An ordered list. This will use different schemes of numbers

to list user items.

 <dl> − A definition list. This arranges user items in the same way as

they are arranged in a dictionary.

HTML colors are specified using predefined color names, or

HEX, RGB, HSL, RGBA, HSLA values.

Check Your Progress 2

4. What is need for tables in HTML?

5. How to merge two columns?

6. What is the difference between td and th tags.

HTML Tags

HTML Tags

45 Self-Instruction Manual

Notes

The tag creates a holding space for the referenced image.

The HTML tables allow web authors to arrange data like text, images,

links, other tables, etc. into rows and columns of cells.

Two attributes called cellpadding and cellspacingare used to adjust

the white space in the table cells.

colspan attribute is used if the user wants to merge two or more columns

into a single column. Similarly rowspan is used to merge two or more

rows.

The <object> element allows HTML authors to specify everything

required by an object for its presentation by a user agent.

Multimedia contents can be included in a web page using img,
bgsound, audio, video and object

2.9SELF ASSESSMENT EXCERCISES

Short Questions

1. How to change the type of numerals in ordered list?

2. List the attributes of lists.

3. How will you represent colors using HSL?

4. What is the purpose of alt attribute in image tag?

5. State the need for tables.

Detail Questions

1. Describe the types of lists.

2. Write short notes on different coloring option used in HTML.

3. How to insert an image into a web page? Describe.

4. With suitable examples explain the TABLE tag of HTML.

5. Explain how to include multimedia contents into a web page.

2.10SUGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. www.w3schools.com

Style Sheets

46 Self-Instruction Manual

Notes

UNIT -3 STYLE SHEETS

Structure

3.0 Introduction

3.1 Objectives

3.2 Cascading Style Sheets

3.3 Formatting Block of Information

3.4 CSS Selectors

3.5 Ways to Insert Styles

3.6 Answers to Check Your Progress

3.7 Let us Sum Up

3.8 Self-Assessment Exercises

3.9 Suggested Readings

3.0 INTRODUCTION

This unit presents basic information about CascadingStyle Sheets (CSS), a

style sheet technology designed to work with HTML and

XMLdocuments.CSS provides a great deal of control over the presentation

of a document, but toexercise this control intelligently requires an

understanding of a number of features. This unit will help the reader to

understand them better.

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Learn different options to apply styles to web pages

 Understand how to format blocks of information

 Learn how to insert styles into a web page

3.2 CASCADING STYLE SHEETS

One of the most important aspects of HTML is the capability to separate

presentation and content. A style is simply a set of formatting instructions

that can be applied to a piece of text.The style is defined either embedded

in eachindividual page itself of in an external style sheet file using a style

sheet language such as CSS or XSLT.

Benefits of CSS

Separation of style and content has many benefits, but has only become

practical in recent years due to improvements in popular web browser‗s

CSS implementations.

Style Sheets

47 Self-Instruction Manual

Notes

 Speed: Overall, user‗s experience of a site utilizing style sheets

will generally be quicker than sites that don‗t use the technology.

‗Overall‘ as the first page will probably load more slowly because

the style sheet AND the content will need to be transferred.

Subsequent pages will load faster because no style information will

need to be downloaded – the CSS file will already be in the

browser‗s cache.

 Maintainability: Holding all the presentation styles in one file

significantly reduces maintenance time and reduces the chance of

human errors, thereby improving presentation consistency. For

example, the font color associated with a type of text element may

be specified -and therefore easily modified -throughout an entire

website simply by changing one short stringof characters in a single

file. The alternate approach, using styles embedded in each

individualpage, would require a cumbersome, time consuming, and

error-prone edit of every file.

 Accessibility: Sites that use CSS with either XHTML or HTML are

easier to fine-tune so that theyappear extremely similar in different

browsers (Explorer, Mozilla, Opera, Safari, etc.).

Sites using CSS "degrade gracefully" in browsers unable to display

graphical content,such as Lynx, or those so very old that they

cannot use CSS. Browsers ignore CSS that they donot understand,

such as CSS 3 statements. This enables a wide variety of user

agents to be able toaccess the content of a site even if they cannot

render the style sheet or are not designed withgraphical capability

in mind. For example, a browser using a refreshable for output

coulddisregard layout information entirely, and the user would still

have access to all page content.

 Customization: If a page's layout information is all stored

externally, a user can decide todisable the layout information

entirely, leaving the site's bare content still in a readable form.

Siteauthors may also offer multiple style sheets, which can be used

to completely change theappearance of the site without altering any

of its content.

Most modern web browsers also allow the user to define their own

style sheet, which caninclude rules that override the author's layout

rules. This allows users, for example, to bold everyhyperlink on

every page they visit.

 Consistency: Because the semantic file contains only the meanings

an author intends to convey, the styling of the various elements of

the document's content is very consistent. For example, headings,

emphasized text, lists and mathematical expressions all receive

consistently applied style properties from the external style sheet.

Authors need not concern themselves with the style properties at

the time of composition. These presentational details can be

deferred until the moment of presentation.

Style Sheets

48 Self-Instruction Manual

Notes

 Portability: The deferment of presentational details until the time

of presentation means that a document can be easily re-purposed

for an entirely different presentation medium with merely the

application of a new style sheet already prepared for the new

medium and consistent with elemental or structural vocabulary of

the semantic document. A carefully authored document for a web

page can easily be printed to a hard-bound volume complete with

headers and footers, page numbers and a generated table of

contents simply by applying a new style sheet.

CSS Styles

A CSS style sheet consists of one or more style rules (sometimes called

statements).This form of rule is called a ruleset and consists of two parts

:

 A selector

 A set of declarations / DeclarationBlock – which is enclosed in { }

Example 3.1:

h1 {
 color:blue;
 margin-top:1em;
}

The selector string indicates the elements to which the rule should apply.

The declarationwithin the declaration block has two parts

i. A property

ii. A value

Declarations must be separated using colons and terminated using

semicolons.

Syntax:

Selector{property: value; property: value …….}

Style Sheets

49 Self-Instruction Manual

Notes

Properties and values in styles

Some of the commonly used attributes and their values are listed below for

reference.

Font Attributes Values

Font-family Comma is delimiter, sequence of fonts like

cursive,sans etc

Font-style Normal, italic, oblique

Font-weight Normal,bold,bolder,lighter,or one of these

numerical values(100 to 900)

Font-size It is absolute size (xx-small,x-

small,small,medium,large,x-large,xx-

large),relative size(larger,smaller),a

number(pixels)

Color and background Attributes Values

Color Sets an element text color

Background-color Used to set back color

Background-image Set background image

Text Attributes Values

Text-decoration None,underline,overline,line-through,blink

Vertical-align top,bottom.middle,text-top,text-bottom

Text-transform Capitalize,uppercase,lowercase

Text-align Left,right,center,justify

Measurement units

Unitname Abbreviation Explanation

Em Em Height of the font

Pica pc 1 pica is 12 points

Point pt 1/72 of inch

pixel px One dot on screen

millimeter mm Printing unit

Centimeter cm Printing unit

inch in Printing unit

Margin related Attributes Values

Margin-top Percentage or length

Margin-bottom Length or percentage

Margin-left Length or percentage

Margin-right Length or percentage

Program Example :

<html>

Style Sheets

50 Self-Instruction Manual

Notes

<head>
<title>My Web Page</title>

<style type="text/css">
h1
{
font-family:mssanserif;
font-size:30;
font-style:italic;
fontweight: bold;
color:red;
background-color:blue;
border:thin groove
}

.m
{
border-width:thick;
border-color:red;
border-style:dashed
}

.mid
{
font-family:BankGothicLtBT;
text-decoration:link;
texttransformation:uppercase;
text-indentation:60%
}

</style>
</head>

<body class="m">

<h1> Department of Computer Science </h1>
<p class="mid">Algappa University Karaikudi</p>
</div>

</body>
</html>

Style Sheets

51 Self-Instruction Manual

Notes

3.3 FORMATTING BLOCKS OF INFORMATION

Every HTML element has a default display value depending on what type

of element it is.The two display values are

 Block

 Inline

Block-level Elements

A block-level element always starts on a new line and takes up the full

width available (stretches out to the left and right as far as it can).

Example 3.2:

<!DOCTYPE html>
<html>
<body>

<div style="border: 1px solid black">Hello
World</div>

<p>The DIV element is a block element, and will
always start on a new line and take up the full
width available (stretches out to the left and
right as far as it can).</p>

</body>
</html>

Block level elements in HTML:

Style Sheets

52 Self-Instruction Manual

Notes

<address>
<article>
<aside>
<blockquote>
<canvas>
<dd>
<div>
<dl>
<dt>
<fieldset>
<figcaption>
<figure>
<footer>
<form>
<h1>-<h6>

<header>
<hr>

<main>
<nav>
<noscript>

<p>
<pre>
<section>
<table>
<tfoot>

<video>

The <div> Element

The <div> element is a block-level element.The <div> element is often

used as a container for other HTML elements.The <div> element has no

required attributes, but style, class and id are common.When used together

with CSS, the <div> element can be used to style blocks of content.

<div style="background-
color:black;color:white;padding:20px;">
 <h2>London</h2>
 <p>London is the capital city of England. It is
the most populous city in the United Kingdom, with
a metropolitan area of over 13 million
inhabitants.
 </p>
</div>

Inline Elements

An inline element does not start on a new line and only takes up as much

width as necessary.

This is an inlineelement inside a paragraph.

Example 3.3:

<!DOCTYPE html>
<html>
<body>

<p>This is an inline span <span style="border: 1px
solid black">Hello World element inside a
paragraph.</p>

Style Sheets

https://www.w3schools.com/tags/tag_address.asp
https://www.w3schools.com/tags/tag_article.asp
https://www.w3schools.com/tags/tag_aside.asp
https://www.w3schools.com/tags/tag_blockquote.asp
https://www.w3schools.com/tags/tag_canvas.asp
https://www.w3schools.com/tags/tag_dd.asp
https://www.w3schools.com/tags/tag_div.asp
https://www.w3schools.com/tags/tag_dl.asp
https://www.w3schools.com/tags/tag_dt.asp
https://www.w3schools.com/tags/tag_fieldset.asp
https://www.w3schools.com/tags/tag_figcaption.asp
https://www.w3schools.com/tags/tag_figure.asp
https://www.w3schools.com/tags/tag_footer.asp
https://www.w3schools.com/tags/tag_form.asp
https://www.w3schools.com/tags/tag_hn.asp
https://www.w3schools.com/tags/tag_header.asp
https://www.w3schools.com/tags/tag_hr.asp
https://www.w3schools.com/tags/tag_li.asp
https://www.w3schools.com/tags/tag_main.asp
https://www.w3schools.com/tags/tag_nav.asp
https://www.w3schools.com/tags/tag_noscript.asp
https://www.w3schools.com/tags/tag_ol.asp
https://www.w3schools.com/tags/tag_p.asp
https://www.w3schools.com/tags/tag_pre.asp
https://www.w3schools.com/tags/tag_section.asp
https://www.w3schools.com/tags/tag_table.asp
https://www.w3schools.com/tags/tag_tfoot.asp
https://www.w3schools.com/tags/tag_ul.asp
https://www.w3schools.com/tags/tag_video.asp

53 Self-Instruction Manual

Notes

<p>The SPAN element is an inline element, and will
not start on a new line and only takes up as much
width as necessary.</p>

</body>
</html>

Inline elements in HTML:

<a>
<abbr>
<acronym>

<bdo>
<big>

<button>
<cite>
<code>
<dfn>

<i>

<input>
<kbd>
<label>

<map>
<object>
<output>
<q>
<samp>
<script>
<select>
<small>

<sub>
<sup>
<textarea>
<time>
<tt>
<var>

The Element

The element is often used as a container for some text.

The element has no required attributes, but style, class and id are

common. When used together with CSS, the element can be used

to style parts of the text.

<h1>My
Important
Heading</h1>

Style Sheets

https://www.w3schools.com/tags/tag_a.asp
https://www.w3schools.com/tags/tag_abbr.asp
https://www.w3schools.com/tags/tag_acronym.asp
https://www.w3schools.com/tags/tag_b.asp
https://www.w3schools.com/tags/tag_bdo.asp
https://www.w3schools.com/tags/tag_big.asp
https://www.w3schools.com/tags/tag_br.asp
https://www.w3schools.com/tags/tag_button.asp
https://www.w3schools.com/tags/tag_cite.asp
https://www.w3schools.com/tags/tag_code.asp
https://www.w3schools.com/tags/tag_dfn.asp
https://www.w3schools.com/tags/tag_em.asp
https://www.w3schools.com/tags/tag_i.asp
https://www.w3schools.com/tags/tag_img.asp
https://www.w3schools.com/tags/tag_input.asp
https://www.w3schools.com/tags/tag_kbd.asp
https://www.w3schools.com/tags/tag_label.asp
https://www.w3schools.com/tags/tag_map.asp
https://www.w3schools.com/tags/tag_object.asp
https://www.w3schools.com/tags/tag_output.asp
https://www.w3schools.com/tags/tag_q.asp
https://www.w3schools.com/tags/tag_samp.asp
https://www.w3schools.com/tags/tag_script.asp
https://www.w3schools.com/tags/tag_select.asp
https://www.w3schools.com/tags/tag_small.asp
https://www.w3schools.com/tags/tag_span.asp
https://www.w3schools.com/tags/tag_strong.asp
https://www.w3schools.com/tags/tag_sub.asp
https://www.w3schools.com/tags/tag_sup.asp
https://www.w3schools.com/tags/tag_textarea.asp
https://www.w3schools.com/tags/tag_time.asp
https://www.w3schools.com/tags/tag_tt.asp
https://www.w3schools.com/tags/tag_var.asp

54 Self-Instruction Manual

Notes

3.4CSS Selectors

CSS selectors are used to "find" (or select) the HTML elements you want

to style. Generally CSS selectors are divided into the following five

categories.

 Simple selectors (select elements based on name, id, class)

 Combinator selectors (select elements based on a specific

relationship between them)

 Pseudo-class selectors (select elements based on a certain state)

 Pseudo-elements selectors (select and style a part of an element)

 Attribute selectors (select elements based on an attribute or

attribute value)

Simple Selectors

Example 3.4:

/* Headers have dark background */
h1,h2,h3,h4,h5,h6 { background-color:purple }

A rule can also apply to multipleelement types by using a selector string

consisting of the comma-separated names of the element types. In the

preceding style rule, each of the selectors (comma-separated components

ofthe selector string) was simply the name of an element type. This form of

selector is calleda type selector.(Grouping Selector)

Example 3.5:

/* All elements bold */
* {font-weight:bold }

The Universal selector is denoted by an asterisk (*).The universal selector

represents every possible element type. So, for example, the above

rulespecifies a value of bold for the font-weight property of every element

in the document.

Example 3.6:

/* Elements with certain id's have light
background */
#p1, #p3 { background-color:aqua }

Another form of selector is the ID selector. Recall that every element in an

XHTMLdocument has an associated id attribute, and that if a value is

assigned to the id attributefor an element then no other element‘s id can

Style Sheets

55 Self-Instruction Manual

Notes

be assigned the same value. If a selector ispreceded by a number sign (#),

then it represents an id value rather than an element typename.

Example 3.7:

/* Elements in certain classes are italic, large
font,or both */

#p4, .takeNote { font-style:italic }
span.special { font-size:x-large }

Another HTML attribute that is frequently used with style sheets is class.

Thisattribute is used to associate style properties with an element as

follows. First, the stylesheet must contain one or more rulesets having

Class Selectors, which are selectors that arepreceded by a period (.), such

as .takeNote in the rule given above.

Then any element that specifies takeNote (without the leading period) as

the value ofits class attribute will be given the properties specified in the

declaration block of thecorresponding style rule. Thus, the first paragraph

of the example is displayed in an italicfont. An element can be assigned to

multiple style classes by using a space-separated list ofclass names as the

value of the class attribute. Forexample, a span element with start tag

will be affected by any rules for the takeNote, special, and cool
classes. Thus, thesecond sentence of the second paragraph of the example

is italicized, since it belongs tothe takeNote class, among others. If a

class name does not correspond to a class selectorin any of the style rules

for a document, then that class value is ignored.

ID and class selectors can also be prefixed by an element type name,

which restrictsthe selector to elements of the specified type. For example,

the style rule

span.special { font-size:x-large }

applies only to span elements that have a class value of special.

Selector Example Example description

.class .intro Selects all elements with

class="intro"

#id #firstname Selects the element with

id="firstname"

* * Selects all elements

Style Sheets

56 Self-Instruction Manual

Notes

element p Selects all <p> elements

element,
element,..

div, p Selects all <div> elements and

all <p> elements

Combinator Selectors:

A CSS selector can contain more than one simple selector. Between the

simple selectors, we can include a combinator.There are four different

combinators in CSS:

 descendant selector (space)

 child selector (>)

 adjacent sibling selector (+)

 general sibling selector (~)

Selector Example Description

Descendant

Selector

div p
{
 background-
color: yellow;
}

The descendant selector

matches all elements that are

descendants of a specified

element

Child

Selector

div > p
{
 background-
color: yellow;
}

The child selector selects all

elements that are the children

of a specified element.

Adjacent

Sibling

Selector

div + p
{
 background-
color: yellow;
}

The adjacent sibling selector

selects all elements that are

the adjacent siblings of a

specified element.

Sibling elements must have

the same parent element, and

"adjacent" means

"immediately following"

General

Sibling

Selector

div ~ p
{
 background-
color: yellow;
}

The general sibling selector

selects all elements that are

siblings of a specified element

Example 3.8:

<!DOCTYPE html>
<html>
<head>
<style>
div p {
 background-color: yellow;

Style Sheets

57 Self-Instruction Manual

Notes

}
</style>
</head>
<body>

<div>
<p>Paragraph 1 in the div.</p>
<p>Paragraph 2 in the div.</p>
<section><p>Paragraph 3 in the div.</p></section>
</div>

<p>Paragraph 4. Not in a div.</p>
<p>Paragraph 5. Not in a div.</p>

</body>
</html>

Example 3.9:

<!DOCTYPE html>
<html>
<head>
<style>
div > p {
 background-color: yellow;
}
</style>
</head>
<body>

<div>
<p>Paragraph 1 in the div.</p>
<p>Paragraph 2 in the div.</p>
<section><p>Paragraph 3 in the
div.</p></section><!-- not Child but Descendant --
>
<p>Paragraph 4 in the div.</p>
</div>

<p>Paragraph 5. Not in a div.</p>
<p>Paragraph 6. Not in a div.</p>

Style Sheets

58 Self-Instruction Manual

Notes

</body>
</html>

Example 3.10:

<!DOCTYPE html>
<html>
<head>
<style>
div + p {
 background-color: yellow;
}
</style>
</head>
<body>

<div>
<p>Paragraph 1 in the div.</p>
<p>Paragraph 2 in the div.</p>
</div>

<p>Paragraph 3. Not in a div.</p>
<p>Paragraph 4. Not in a div.</p>

</body>
</html>

Example 3.11:

<!DOCTYPE html>
<html>
<head>

Style Sheets

59 Self-Instruction Manual

Notes

<style>
div ~ p {
 background-color: yellow;
}
</style>
</head>
<body>

<p>Paragraph 1.</p>
<div>
<p>Paragraph 2.</p>
</div>

<p>Paragraph 3.</p>
<code>Some code.</code>
<p>Paragraph 4.</p>
</body>
</html>

Pseudo-class Selectors:

A pseudo-class is used to define a special state of an element.For example,

it can be used to:

 Style an element when a user move mouse over it

 Style visited and unvisited links differently

 Style an element when it gets focus

In addition to ID and class selectors, several predefined pseudo-
classes are associatedwith “a” (anchor) elements that have an href

attribute (source anchors).

Example 3.12:

/* Hyperlink ('a' element) styles */
a:link { color:black }
a:visited { color:yellow }
a:hover { color:green }
a:active { color:red }

The following table lists the pseudo-classselectors for “a” element.

.

Style Sheets

60 Self-Instruction Manual

Notes

Selector Associated“a”Elements

a:visited Any element with href corresponding to a URL

that has been visited recently by the user

a:link Any element that does not belong to the

a:visited pseudo-class

a:active An element that is in the process of being selected;

for example, the mouse has been clicked on the

element but not released

a:hover An element over which the mouse cursor is located

but that does not belong to the a:active pseudo-

class

Pseudo-classes can be combined with CSS classes

Example 3.13:

<!DOCTYPE html>
<html>
<head>
<style>
p {
 display: none;
 background-color: yellow;
 padding: 20px;
}

div:hover p {
 display: block;
}
</style>
</head>
<body>

<div>Hover over me to show the p element
<p>Tool Tip Text! Here I am!</p>
</div>

</body>
</html>

Pseudo-Elements Selectors:

A CSS pseudo-element is used to style specified parts of an element.For

example, it can be used to:

Style Sheets

61 Self-Instruction Manual

Notes

 Style the first letter, or line, of an element

 Insert content before, or after, the content of an element

Syntax

selector::pseudo-element
{
 property:value;
}

Example 3.14:The ::first-line Pseudo-element

<!DOCTYPE html>
<html>
<head>
<style>
p::first-line {
 color: #ff0000;
 font-variant: small-caps;
}
</style>
</head>
<body>

<p>You can use the ::first-line pseudo-element to
add a special effect to the first line of a text.
Some more text. And even more, and more, and more,
and more, and more, and more, and more, and more,
and more, and more, and more, and more.</p>

</body>
</html>

Example 3.15:The ::before Pseudo-element

<!DOCTYPE html>
<html>
<head>

<style>
h1::before {
 content: url(smiley.gif);
}

Style Sheets

62 Self-Instruction Manual

Notes

</style>
</head>
<body>

<h1>This is a heading</h1>

<p>The ::before pseudo-element inserts content
before the content of an element.</p>

<h1>This is a heading</h1>

<p>
Note: IE8 supports the content property
only if a !DOCTYPE is specified.
</p>

</body>
</html>

Example 3.16:The ::selection Pseudo-element

<!DOCTYPE html>
<html>
<head>
<style>
::-moz-selection { /* Code for Firefox */
 color: red;
 background: yellow;
}

::selection {
 color: red;
 background: yellow;
}
</style>
</head>
<body>

<h1>Select some text on this page:</h1>

<p>This is a paragraph.</p>

<div>This is some text in a div element.</div>

Style Sheets

63 Self-Instruction Manual

Notes

<p>Note: ::selection is not
supported in Internet Explorer 8 and earlier
versions.</p>

<p>Note: Firefox supports an
alternative, the ::-moz-selection property.</p>

</body>
</html>

All CSS Pseudo Elements

Selector Example Example description

::after p::after Insert content after every <p>

element

::before p::before Insert content before every

<p> element

::first-
letter

p::first-
letter

Selects the first letter of every

<p> element

::first-
line

p::first-
line

Selects the first line of every

<p> element

::selection p::selection Selects the portion of an

element that is selected by a

user

Attribute Selectors:

It is possible to style HTML elements that have specific attributes or

attribute values.The [attribute] selector is used to select elements with

a specified attribute.

The following example selects all <a> elements with a target attribute:

Example 3.17:

<!DOCTYPE html>
<html>
<head>
<style>
a[target] {
 background-color: yellow;
}

Style Sheets

https://www.w3schools.com/cssref/sel_after.asp
https://www.w3schools.com/cssref/sel_before.asp
https://www.w3schools.com/cssref/sel_firstletter.asp
https://www.w3schools.com/cssref/sel_firstletter.asp
https://www.w3schools.com/cssref/sel_firstline.asp
https://www.w3schools.com/cssref/sel_firstline.asp
https://www.w3schools.com/cssref/sel_selection.asp

64 Self-Instruction Manual

Notes

</style>
</head>
<body>

<p>The links with a target attribute gets a yellow
background:</p>

w3schools.com
<a href="http://www.disney.com"
target="_blank">disney.com
<a href="http://www.wikipedia.org"
target="_top">wikipedia.org

<p>Note:
For [<i>attribute</i>] to work in IE8 and earlier,
a DOCTYPE must be declared.
</p>

</body>
</html>

The [attribute="value"] selector is used to select elements with a

specified attribute and value.

a[target="_blank"]
{
 background-color: yellow;
}

Selector Example Example description

[attribute] [target] Selects all elements with a

target attribute

[attribute=va
lue]

[target=_bla
nk]

Selects all elements with

target="_blank"

[attribute~=v
alue]

[title~=flow
er]

Selects all elements with a title

attribute containing the word

"flower"

[attribute|=v
alue]

[lang|=en] Selects all elements with a lang

attribute value starting with

"en"

[attribute^=v
alue]

a[href^="htt
ps"]

Selects every <a> element

whose href attribute value

begins with "https"

[attribute$=v a[href$=".pd Selects every <a>element

Style Sheets

https://www.w3schools.com/cssref/sel_attribute.asp
https://www.w3schools.com/cssref/sel_attribute_value.asp
https://www.w3schools.com/cssref/sel_attribute_value.asp
https://www.w3schools.com/cssref/sel_attribute_value_contains.asp
https://www.w3schools.com/cssref/sel_attribute_value_contains.asp
https://www.w3schools.com/cssref/sel_attribute_value_lang.asp
https://www.w3schools.com/cssref/sel_attribute_value_lang.asp
https://www.w3schools.com/cssref/sel_attr_begin.asp
https://www.w3schools.com/cssref/sel_attr_begin.asp
https://www.w3schools.com/cssref/sel_attr_end.asp

65 Self-Instruction Manual

Notes

alue] f"] whose href attribute value

ends with ".pdf"

[attribute*=v
alue]

a[href*="w3s
chools"]

Selects every <a> element

whose href attribute value

contains the substring

"w3schools"

3.5 WAYS TO INSERT STYLES

There are three ways of inserting a style sheet:

i. External CSS

ii. Internal CSS

iii. Inline CSS

External CSS

With an external style sheet, you can change the look of an entire website

by changing just one file. Each HTML page must include a reference to the

external style sheet file inside the <link> element, inside the head section.

Example 3.18:

demo.html

<!DOCTYPE html>
<html>
<head>

<link rel="stylesheet" type="text/css"
href="mystyle.css">

</head>
<body>

<h1>This is a heading</h1>
<p>This is a paragraph.</p>

</body>
</html>

An external style sheet can be written in any text editor, and must be saved

with a .css extension.The external .css file should not contain any

HTML tags.

mystyle.css

body
{
 background-color: lightblue;
}

h1

Style Sheets

https://www.w3schools.com/cssref/sel_attr_contain.asp
https://www.w3schools.com/cssref/sel_attr_contain.asp

66 Self-Instruction Manual

Notes

{
 color: navy;
 margin-left: 20px;
}

Internal CSS

An internal style sheet may be used if one single HTML page has a unique

style.The internal style is defined inside the <style> element, inside the

head section.

Example 3.19:

<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-color: linen;
}

h1 {
 color: maroon;
 margin-left: 40px;
}
</style>
</head>
<body>

<h1>This is a heading</h1>
<p>This is a paragraph.</p>

</body>
</html>

Inline CSS

An inline style may be used to apply a unique style for a single element.To

use inline styles, add the style attribute to the relevant element. The style

attribute can contain any CSS property.

Example 3.20:

<!DOCTYPE html>
<html>
<body>

<h1 style="color:blue;text-align:center;">
This is a heading</h1>
<p style="color:red;">

Style Sheets

67 Self-Instruction Manual

Notes

This is a paragraph.</p>

</body>
</html>

Cascading Order

What style will be used when there is more than one style

specified for an HTML element?

All the styles in a page will "cascade" into a new "virtual" style sheet by

the following rules, where number one has the highest priority:

1. Inline style (inside an HTML element)

2. External and internal style sheets (in the head section)

3. Browser default

So, an inline style has the highest priority, and will override external and

internal styles and browser defaults.

3.6 ANSWERS TO CHECK YOUR PROGRESS

1. Benefits of CSS are

i. Speed

ii. Maintainability

iii. Accessibility

iv. Customization

v. Consistency

vi. Portability.

2. A CSS style sheet consists of one or more style rules (sometimes

called statements). This form of rule is called a ruleset and consists

of two parts

 A selector

 A set of declarations / Declaration Block – which is

enclosed in { }.

Selector{property: value; property: value …….}

Check Your Progress

1. List the benefits of CSS

2. Write down the syntax for styles.

3. What are block level elements?

4. What do you mean by inline elements?

5. List the categories of CSS selectors.

6. How will you insert styles?

Style Sheets

68 Self-Instruction Manual

Notes

3. A block-level element always starts on a new line and takes up the

full width available.

4. An inline element does not start on a new line and only takes up as

much width as necessary

5. Generally CSS selectors are divided into the following five

categories.

 Simple selectors (select elements based on name, id, class)

 Combinator selectors (select elements based on a specific

relationship between them)

 Pseudo-class selectors (select elements based on a certain state)

 Pseudo-elements selectors (select and style a part of an element)

 Attribute selectors (select elements based on an attribute or

attribute value)

6. There are three ways to insert styles namely

 External CSS

 Internal CSS

 Inline CSS

3.7 LET US SUM UP

A style is simply a set of formatting instructions that can be applied to a

piece of text.

The style is defined either embedded in each individual page itself of in an

external style sheet file using a style sheet language such as CSS or XSLT.

A CSS style sheet consists of one or more style rules (sometimes called

statements).This form of rule is called a ruleset and consists of two parts

 A selector

 A set of declarations / Declaration Block – which is enclosed in { }

The selector string indicates the elements to which the rule should apply.

The declarationwithin the declaration block has two parts

i. A property

ii. A value

Every HTML element has a default display value depending on what type

of element it is.The two display values are

 Block

 Inline

The <div> element is a block-level element.The <div> element is often

used as a container for other HTML elements.The <div> element has no

required attributes,but style, class and id are common.

Style Sheets

69 Self-Instruction Manual

Notes

The element is often used as a container for some text.

The element has no required attributes, but style, class and id are

common.

A rule can also apply to multipleelement types by using a selector string

consisting of the comma-separated names of the element types.This form

of selector is calleda type selector.

The Universal selector is denoted by an asterisk (*).The universal selector

represents every possible element type.

A CSS selector can contain more than one simple selector. Between the

simple selectors, we can include a combinator.

A pseudo-class is used to define a special state of an element.For example,

it can be used to:

 Style an element when a user move mouse over it

 Style visited and unvisited links differently

 Style an element when it gets focus

A CSS pseudo-element is used to style specified parts of an element.For

example, it can be used to:

 Style the first letter, or line, of an element

 Insert content before, or after, the content of an element

It is possible to style HTML elements that have specific attributes or

attribute values.The [attribute] selector is used to select elements with

a specified attribute

There are three ways of inserting a style sheet:

i. External CSS

ii. Internal CSS

iii. Inline CSS.

3.8 SELF-ASSESSMENT EXERCISES

Short Questions

1. What do you mean by ID Selector?

2. State the purpose of Class Selectors.

3. What are the four types of Combinator Selectors?

4. What is the difference between pseudo class and pseudo element

selectors?

5. What is drawback of inline styles?

Detail Questions

1. Write a note on Style Sheets

2. Discuss about the commonly used style property values

3. How to format blocks of information? Discuss.

4. Describe the types of CSS selectors.

5. Brief about <div> and

6. Discuss about attribute selectors

7. Explain about the ways to include styles into a page.

Style Sheets

70 Self-Instruction Manual

Notes

3.9SUGGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. www.w3schools.com

Style Sheets

71 Self-Instruction Manual

Notes

BLOCK – II

CLIENT SIDE PROGRAMMING

UNIT- 4 JAVASCRIPT

Structure

4.0 Introduction

4.1 Objectives

4.2 Dynamic HTML

4.3 JavaScript

4.4 Variables

4.5 Operators

4.6 Statements

4.7 Objects

4.8 Mathematical Functions

4.9 String Manipulators

4.10 Arrays

4.11 Functions

4.12 Answers to Check Your Progress

4.13 Let us Sum up

4.14 Self-Assessment Exercises

4.15 Suggested Readings

4.0 INTRODUCTION

JavaScript is the programming language of the Web. JavaScript is the

premier client-side interpreted scripting language. The overwhelming

majority ofmodern websites use JavaScript, and all modern web

browsersinclude JavaScript interpreters, making JavaScript the most

ubiquitous programming language in history. JavaScript is part of thetriad

of technologies that all Web developers must learn: HTML to specify the

contentof web pages, CSS to specify the presentation of web pages, and

JavaScript to specifythe behavior of web pages.By combining all of these

technologies, developers can create interesting and interactive websites.

This unit will provide you basic insight into JavaScript.

4.1 OBJECTIVES

After going through this unit, you will be able to:

 Learn the need for dynamic web pages

 Understand how to write programs using Java Script

 Know the basics of arrays and functions

Java Script

72 Self-Instruction Manual

Notes

4.2 DYNAMIC HTML

The term Dynamic HTML, often abbreviated as DHTML, refers to the

technique of making Web pages dynamic by client-side scripting to

manipulate the document content and presentation. Web pages can be

made more lively, dynamic, or interactive by DHTML technique. There is

no such thing as a single Dynamic HTML standard. DHTML is an

amalgam of specifications that stem from multiple standards efforts and

proprietary technologies that are built into the two most popular DHTML-

capable browsers.

DHTML is not a language but a term used to describe the way of making

dynamic and interactive web pages. It is a combination of

HTML, JavaScript, Cascading Style Sheets (CSS) and Document Object

Model (DOM). Dynamic content is added to static HTML pages using

scripts and styles. DHTML uses client side scripting languages like

JavaScript to change the static attributes of a HTML page to generate a

dynamic effect. This means all DHTML effects achieved are after loading

of content on a page without interacting with server again.

Features of DHTML

 Dynamic Content – Content on the page is modified dynamically

based on the user input. Below is the example of the content

change when hovering the mouse over the text

 Dynamic Style – The appearance of an element on a web page

is modified dynamically like color change or font change. Below is

the example of dynamic font change on mouse hover

 Dynamic Positioning – The position of an element is dynamically

changed relative to other elements on the page.

 Dynamic Binding – Linking an object at run time based on the

conditions at that moment.

Advantages of DHTML

 DHTML supports adding styles to static content in various

manners.

 It is dynamic so it can be changed even during the run time

execution.

 Webmasters are often limited to use default fonts such as Arial or

Times Roman. DHTML allows downloadable fonts which make

the web pages looking more attractive.

 DHTML page is also saved as an .html file.

It is worth to note here that using multiple scripts on a web page will

reduce the page loading speed and slower the site. Also dynamic pages

may not perform well on search engines compared to static HTML pages.

Java Script

73 Self-Instruction Manual

Notes

Static vs Dynamic Webpages

Parameters Static Webpage Dynamic Webpage

Definition  Loads the same content

every time the page is
reloaded.

 Loads different content each

time the page is loaded or
refreshed.

 Provides interactive features

within the page without re-
loading.

Browser  Browser sends the HTTP

request and receives the

response from the server.
 Interprets the markups in

the received HTML

document and display it
as a webpage.

 Client side scripting works

in the same manner like a

static page and the browser
process the script code.

 Server side scripting

involves processing of the
script code at server side

before sending it to the

client‘s browser.

Browser

Settings

 No special settings
required.

 JavaScript is to be enabled
in all type of browsers to see

dynamic behaviour of a site.

Complexity  Less complex  Client side scripting

involves medium
complexity.

 Server side scripting

involves high complexity.

Cost  In most of the cases it
costs only a domain

name.

 Free hosting is available
with most of the website

builder tools.

 Separate hosting account is
required to access server

side, hence sites involving

server side scripting needs
high cost compared to the

static or sites involving

client side scripting.

Google

Analytics

 Installing Analytics code
is simple.

 Copy the Analytics script

code and paste it in the

header section of a page.

 Needs to follow the difficult
process using Tracking

Code wizard for installing

Analytics code in a PHP or

ASP page.

Interactive

Features

 No interactive features

are provided to the

visitors.

 Simple features like form

validations are done with

JavaScript.

 Complex features like login
module are created with

PHP.

Language  Static pages are generally

created with Hyper Text
Markup Language

(HTML).

 It is not necessary that all
HTML pages are static.

Scripts can be embedded

in a static HTML
document.

 Dynamic pages are created

with scripting languages.
 Client side scripting

languages includes

JavaScript, ActionScript and
Flash.

 Server side scripting

language includes PHP,
ASP, JSP, ASP.NET,

ColdFusion, Perl and

WebDNA.

Java Script

74 Self-Instruction Manual

Notes

Layout and

Content

 Both content and layout

of a static webpages are

fixed.

 Layout and content can be

changed independently in a

dynamic webpage.

Loading  Static page loads very

fast since no script

processing at client and

server side is required.

 Dynamic page loads slowly

compared to a static page

since it involves processing

of client or server side
scripts.

Multimedia  Simple video or audio

elements can be added to

a static site.

 Flash objects can be added

to a dynamic site.

 Flash objects respond to the
user inputs and provide

more interactive features.

Page Name  Static page name mostly

ends with .html or .htm.

 Dynamic page name ends

with .php or .asp.

Page Speed  Loads very fast.  Loads slow due to script

processing.

 Sometimes script becomes
non-responsive and forces

the browser to close.

Personalized  Content can‘t be

personalized for a
specific user.

 Content can be personalized

for a specific user based on
login or any other

parameter.

SEO  Search engines easily

index the static pages.

 Since the content of a same

page is changing, search
engines finds it difficult to

index dynamic pages.

 Webmasters can redirect

dynamic pages to a static
one so that the search

engines can index it easily.

Server  Server receives the

request and sends the
HTML document as it is.

 Server processes the script

code if required before
sending the document to the

client.

Setup  It is easy to setup a static

website using any
website builder tools.

 It is difficult to setup a

dynamic site since the
setting up of content

management system is more

time consuming.

Some

Examples

 Any fixed content site
can be a static site.

 Simple form validations
using JavaScript.

 Complex server side

activities like login, session
id tracking and payment

gateway for credit card

processing.

Source Code  Source code of a static
page will show the

HTML content along

with embedded client
side scripts if any.

 Right click on any

webpage to see the

source code.

 Source code of a dynamic
page will only show the

HTML content and does not

show any server side script
code.

 Example, check source code

of any .php page and you

will not find any PHP codes.

Java Script

75 Self-Instruction Manual

Notes

Suitability  More suitable for

distributing fixed

information created and
maintained by the site

owner.

 Suitable for sites providing

more interactive and

customized features based
on user login or other inputs.

User

Friendliness

 Less user friendly due to

the fixed content.

 More user friendly by

providing customized
content.

4.3JAVASCRIPT

JavaScript was introduced in 1995 as a way to add programs to web pages

in theNetscape Navigator browser. The language has since been adopted

by all othermajor graphical web browsers. It has made modern web

applications possibleapplications with which user can interact directly

without doing a page reloadfor every action. JavaScript is also used in

more traditional websites to providevarious forms of interactivity and

cleverness. The characteristics of JavaScript are

 JavaScript is a lightweight, interpreted programming language.

 Designed for creating network-centric applications.

 Complementary to and integrated with Java.

 Complementary to and integrated with HTML.

 Open and cross-platform

Advantages of JavaScript

 Less server interaction − We can validate user input before

sending the page off to the server. This saves server traffic,

which means fewer loads on the server.

 Immediate feedback to the visitors − Visitors don't have to

wait for a page reload to see if they have forgotten to enter

something.

 Increased interactivity − We can create interfaces that react

when the user hovers over them with a mouse or activates

them via the keyboard.

 Richer interfaces − We can use JavaScript to include such

items as drag-and-drop components and sliders to give a Rich

Interface to our site visitors.

One of major strengths of JavaScript is that it does not require expensive

development tools. One can start with a simple text editor such as Notepad.

Since it is an interpreted language inside the context of a web browser, we

don't even need to buy a compiler.

JavaScript can be implemented using JavaScript statements that are placed

within the <script>... </script> HTML tags in a web page.

Java Script

76 Self-Instruction Manual

Notes

The <script> tag alerts the browser program to start interpreting all the

text between these tags as a script. A simple syntax of JavaScript will

appear as follows.

<script ...>

 JavaScript code

</script>

The script tag takes two important attributes −

 Language − This attribute specifies what scripting language is

being used. Typically, its value will be javascript.

 Type − This attribute is recommended to indicate the scripting

language in use and its value should be set to

"text/javascript".

So the JavaScript segment will look like

<script language = "javascript"
 type = "text/javascript">

 JavaScript code

</script>

Example 4.1

<html>
<body>
<script language = "javascript" type =
"text/javascript">

 document.write("Hello World!")

</script>
</body>
</html>

Points to be noted

 JavaScript programs are written using the Unicode character set

 JavaScript ignores spaces, tabs, and newlines that appear in

JavaScript programs.

 Simple statements in JavaScript are generally followed by a

semicolon character, just as they are in C, C++, and Java.

 JavaScript, however, allows us to omit this semicolon if each of

our statements is placed on a separate line.

Java Script

77 Self-Instruction Manual

Notes

 JavaScript is a case-sensitive language.

 However, that HTML is not case-sensitive.

 For example, the HTML onclick event handler attribute is

sometimes specified as onClick in HTML, butit must be

specified as onclick in JavaScript code

 JavaScript is object-oriented.

 The JavaScript interpreter performs automatic garbage collection

for memory management

Example 4.2

<html>
<head>
</head>

<body>
<script type = "text/javascript">
<!--
 document.write("Hello World")
 //-->
</script>

<p>This is web page body </p>
</body>
</html>

Example 4.3

<html>
<head>
<script type = "text/javascript">
<!--
 function sayHello() {
 alert("Hello World")
 }
 //-->
</script>
</head>

<body>
<script type = "text/javascript">
<!--
 document.write("Hello World")
 //-->
</script>

<input type = "button" onclick = "sayHello()"
value = "Say Hello" />
</body>
</html>

Java Script

78 Self-Instruction Manual

Notes

Comments in JavaScript

JavaScript supports both C-style and C++-style comments, thus −

 Any text between a // and the end of a line is treated as a

comment and is ignored by JavaScript.

 Any text between the characters /* and */ is treated as a

comment. This may span multiple lines.

 JavaScript also recognizes the HTML comment opening sequence

<!--. JavaScript treats this as a single-line comment, just as it

does the // comment.

 The HTML comment closing sequence --> is not recognized by

JavaScript so it should be written as //-->.

Example 4.4

<script language = "javascript" type =
"text/javascript">
<!--
 // It is single line comments similar to C++

 /*
 * This is a multi-line comment in JavaScript
 * It is similar to comments in C Programming
 */

 //-->
</script>

4.4 VARIABLES

A literalis a data value that appears directly in a program.

Example 4.5

12 // The number twelve
1.2 // The number one point two

"hello world" // A string of text

'Hi' // Another string

true // A Boolean value

/javascript/gi
/* A "regular expression" literal (for pattern
matching)
*/
null // Absence of an object

Java Script

79 Self-Instruction Manual

Notes

An identifieris simply a name. In JavaScript, identifiers are used to name

variables andfunctions and to provide labels for certain loops in JavaScript

code. A JavaScript identifiermust begin with

 a letter,

 an underscore (_), or

 a dollar sign ($).

Subsequent characterscan be letters, digits, underscores, or dollar signs.

(Digits are not allowed as the first character so that JavaScript can easily

distinguish identifiers from numbers.)

Example 4.6

i
my_variable_name
v13
_dummy
$str

Computer programs work by manipulating values, such as the number

3.14 or the text“Hello World”.The kinds of values that can be

represented and manipulated in aprogramming language are known as

types, and one of the most fundamental characteristicsof a programming

language is the set of types it supports.

JavaScript types can be divided into two categories: primitive typesand

object types.

 JavaScript‘s primitive types include numbers, strings of text

(known as strings), andBoolean truth values (known as booleans).

The special JavaScript values null and undefined are primitive

values, but they are notnumbers, strings, or booleans.

 Any JavaScript value that is not a number, a string, a boolean, or

null or undefined isan object. An object (that is, a member of the

type object) is a collection of propertieswhere each property has a

name and a value (either a primitive value, such as a numberor

string, or an object). An ordinary JavaScript object is an unordered

collection of named values. The languagealso defines a special kind

of object, known as an array, which represents an orderedcollection

of numbered values. The JavaScript language includes special

syntax forworking with arrays, and arrays have some special

behaviour that distinguishes themfrom ordinary objects.

JavaScript types can also be categorized as mutableand immutabletypes.

 A value of a mutable type can change. Objects and arrays are

mutable: a JavaScript program can change the values of object

properties and array elements.

 Numbers, booleans, null, and undefined are immutable—it doesn‘t

even make sense to talk about changing the value of a number, for

Java Script

80 Self-Instruction Manual

Notes

example. Strings can be thought of as arrays of characters, and you

might expect them to be mutable. In JavaScript, however, strings

are immutable: you can access the text at any index of a string but

JavaScript provides no way to alter the text of an existing string

When a programneeds to retain a value for future use, it assigns the value

to (or ―stores‖ the value in) avariable. A variable defines a symbolic name

for a value and allows the value to bereferred to by name. The way that

variables work is another fundamental characteristicof any programming

language.Before using a variable in a JavaScript program, we must declare

it. Variables are declared with the var keyword as follows.

Example 4.7

<script type = "text/javascript">
<!--
 var money;
 var name;
 //-->
</script>

Example 4.8

It is possible to declare multiple variables with the same var keyword as

follows

<script type = "text/javascript">
<!--
 var money, name;
 //-->
</script>

Storing a value in a variable is called variable initialization. We can do

variable initialization at the time of variable creation or at a later point in

time when we need that variable.

Example 4.9

For instance, we might create variable named money and assign the value

2000.50 to it later. For another variable, we can assign a value at the time

of initialization as follows.

<script type = "text/javascript">
<!--
 var name = "Ali";
 var money;
 money = 2000.50;
 //-->
</script>

Java Script

81 Self-Instruction Manual

Notes

JavaScript is untyped language. This means that a JavaScript variable can

hold a value of any data type. Unlike many other languages, we don't have

to tell JavaScript during variable declaration what type of value the

variable will hold. The value type of a variable can change during the

execution of a program and JavaScript takes care of it automatically.

JavaScript Variable Scope

JavaScript uses lexical scoping. Variables declared outsideof a function

are global variables and are visible everywhere in a JavaScript

program.Variables declared inside a function have function scope and are

visible only to codethat appears inside that function.

JavaScript variables have only two scopes.

 Global Variables − A global variable has global scope which

means it can be defined anywhere in the JavaScript code.

 Local Variables − A local variable will be visible only within a

function where it is defined. Function parameters are always local

to that function.

Within the body of a function, a local variable takes precedence over a

global variable with the same name. If we declare a local variable or

function parameter with the same name as a global variable, we

effectively hide the global variable.

Example 4.10

<html>
<body onload = checkscope();>

<script type = "text/javascript">
<!--
 var myVar = "global";
 // Declare a global variable
 function checkscope()
 {
 var myVar = "local";
 // Declare a local variable
 document.write(myVar);
 }
 //-->
</script>
</body>

</html>

JavaScript reserves a number of identifiers as the keywords of the

language itself. We cannot use these words as identifiers in our programs.

Java Script

82 Self-Instruction Manual

Notes

A list of reserved words in JavaScript is given in the following table.

abstract else instanceof switch

boolean enum int synchronized

break export interface this

byte extends long throw

case false native throws

catch final new transient

char finally null true

class float package try

const for private typeof

continue function protected var

debugger goto public void

default if return volatile

delete implements short while

do import static with

double in super

4.5 OPERATORS

JavaScript supports the following types of operators.

 Arithmetic Operators

 Comparison Operators

 Logical (or Relational) Operators

 Assignment Operators

 Conditional (or ternary) Operators

Example 4.11 – Arithmetic Operators

<html>
<body>

<script type = "text/javascript">
<!--
 var a = 33;
 var b = 10;
 var c = "Test";
 var linebreak = "
";

 document.write("a + b = ");
 result = a + b;
 document.write(result);
 document.write(linebreak);

Java Script

83 Self-Instruction Manual

Notes

 document.write("a - b = ");
 result = a - b;
 document.write(result);
 document.write(linebreak);

 document.write("a / b = ");
 result = a / b;
 document.write(result);
 document.write(linebreak);

 document.write("a % b = ");
 result = a % b;
 document.write(result);
 document.write(linebreak);

 document.write("a + b + c = ");
 result = a + b + c;
 document.write(result);
 document.write(linebreak);

 a = ++a;
 document.write("++a = ");
 result = ++a;
 document.write(result);
 document.write(linebreak);

 b = --b;
 document.write("--b = ");
 result = --b;
 document.write(result);
 document.write(linebreak);
 //-->
</script>

 Set the variables to different values and
then try...
</body>
</html>

Output

a + b = 43
a - b = 23
a / b = 3.3
a % b = 3
a + b + c = 43Test
++a = 35
--b = 8
Set the variables to different values and then try...

Java Script

84 Self-Instruction Manual

Notes

Example 4.12 – Comparison Operators

<html>
<body>
<script type = "text/javascript">
<!--
 var a = 10;
 var b = 20;
 var linebreak = "
";

 document.write("(a == b) => ");
 result = (a == b);
 document.write(result);
 document.write(linebreak);

 document.write("(a < b) => ");
 result = (a < b);
 document.write(result);
 document.write(linebreak);

 document.write("(a > b) => ");
 result = (a > b);
 document.write(result);
 document.write(linebreak);

 document.write("(a != b) => ");
 result = (a != b);
 document.write(result);
 document.write(linebreak);

 document.write("(a >= b) => ");
 result = (a >= b);
 document.write(result);
 document.write(linebreak);

 document.write("(a <= b) => ");
 result = (a <= b);
 document.write(result);
 document.write(linebreak);
 //-->
</script>
 Set the variables to different values and
different operators and then try...
</body>
</html>

Output

(a == b) => false

(a < b) => true

(a > b) => false

Java Script

85 Self-Instruction Manual

Notes

(a != b) => true

(a >= b) => false

a <= b) => true

Set the variables to different values and different

operators and then try...

Example 4.13 – Logical Operators

<html>
<body>
<script type = "text/javascript">
<!--
 var a = true;
 var b = false;
 var linebreak = "
";

 document.write("(a && b) => ");
 result = (a && b);
 document.write(result);
 document.write(linebreak);

 document.write("(a || b) => ");
 result = (a || b);
 document.write(result);
 document.write(linebreak);

 document.write("!(a && b) => ");
 result = (!(a && b));
 document.write(result);
 document.write(linebreak);
 //-->
</script>
<p>Set the variables to different values and
different operators and then try...</p>
</body>
</html>

Output

(a && b) => false

(a || b) => true

!(a && b) => true

Set the variables to different values and different

operators and then try...

Example 4.14 – Bitwise Operators

<html>
<body>
<script type = "text/javascript">

Java Script

86 Self-Instruction Manual

Notes

<!--
 var a = 2; // Bit presentation 10
 var b = 3; // Bit presentation 11
 var linebreak = "
";

 document.write("(a & b) => ");
 result = (a & b);
 document.write(result);
 document.write(linebreak);

 document.write("(a | b) => ");
 result = (a | b);
 document.write(result);
 document.write(linebreak);

 document.write("(a ^ b) => ");
 result = (a ^ b);
 document.write(result);
 document.write(linebreak);

 document.write("(~b) => ");
 result = (~b);
 document.write(result);
 document.write(linebreak);

 document.write("(a << b) => ");
 result = (a << b);
 document.write(result);
 document.write(linebreak);

 document.write("(a >> b) => ");
 result = (a >> b);
 document.write(result);
 document.write(linebreak);
 //-->
</script>
<p>Set the variables to different values and
different operators and then try...</p>
</body>
</html>

Output

(a & b) => 2

(a | b) => 3

(a ^ b) => 1

(~b) => -4

(a << b) => 16

(a >> b) => 0

Set the variables to different values and different

operators and then try...

Java Script

87 Self-Instruction Manual

Notes

Example 4.15 – Assignment Operators

<html>
<body>
<script type = "text/javascript">
<!--
 var a = 33;
 var b = 10;
 var linebreak = "
";

 document.write("Value of a => (a = b)
=> ");
 result = (a = b);
 document.write(result);
 document.write(linebreak);

 document.write("Value of a => (a += b)
=> ");
 result = (a += b);
 document.write(result);
 document.write(linebreak);

 document.write("Value of a => (a -= b)
=> ");
 result = (a -= b);
 document.write(result);
 document.write(linebreak);

 document.write("Value of a => (a *= b)
=> ");
 result = (a *= b);
 document.write(result);
 document.write(linebreak);

 document.write("Value of a => (a /= b)
=> ");
 result = (a /= b);
 document.write(result);
 document.write(linebreak);

 document.write("Value of a => (a %= b)
=> ");
 result = (a %= b);
 document.write(result);
 document.write(linebreak);
 //-->
</script>
<p>Set the variables to different values and
different operators and then try...</p>
</body>
</html>

Java Script

88 Self-Instruction Manual

Notes

Output

Value of a => (a = b) => 10

Value of a => (a += b) => 20

Value of a => (a -= b) => 10

Value of a => (a *= b) => 100

Value of a => (a /= b) => 10

Value of a => (a %= b) => 0

Set the variables to different values and different

operators and then try...

Example 4.16 – Conditional Operator

<html>
<body>
<script type = "text/javascript">
<!--
 var a = 10;
 var b = 20;
 var linebreak = "
";

 document.write ("((a > b) ? 100 : 200)
=> ");
 result = (a > b) ? 100 : 200;
 document.write(result);
 document.write(linebreak);

 document.write ("((a < b) ? 100 : 200)
=> ");
 result = (a < b) ? 100 : 200;
 document.write(result);
 document.write(linebreak);
 //-->
</script>
<p>Set the variables to different values and
different operators and then try...</p>
</body>
</html>

Output

((a > b) ? 100 : 200) => 200

((a < b) ? 100 : 200) => 100

Set the variables to different values and different

operators and then try...

Example 4.17 – Typeof Operator

<html>
<body>
<script type = "text/javascript">

Java Script

89 Self-Instruction Manual

Notes

<!--
 var a = 10;
 var b = "String";
 var linebreak = "
";

 result = (typeof b == "string" ? "B is
String" : "B is Numeric");
 document.write("Result => ");
 document.write(result);
 document.write(linebreak);

 result = (typeof a == "string" ? "A is
String" : "A is Numeric");
 document.write("Result => ");
 document.write(result);
 document.write(linebreak);
 //-->
</script>
<p>Set the variables to different values and
different operators and then try...</p>
</body>
</html>

Output

Result => B is String

Result => A is Numeric

Set the variables to different values and different

operators and then try...

4.6STATEMENTS

Statements areJavaScript sentences or commands. Expressions are

evaluated to produce a value, but statements areexecuted to make

something happen. Expressions with side effects, such as assignments and

function invocations, can standalone as statements, and when used this

way they are known as expression statements.A similar category of

statements are the declaration statements that declare newvariables and

define new functions.

JavaScript programs are nothing more than a sequence of statements to

execute. Bydefault, the JavaScript interpreter executes these statements

one after another in theorder they are written. Another way to ―make

something happen‖ is to alter this defaultorder of execution, and

JavaScript has a number of statements or control structures thatdo just

this:

• Conditionals are statements like if and switch that make the

JavaScript interpreterexecute or skip other statements depending

on the value of an expression.

Java Script

90 Self-Instruction Manual

Notes

• Loopsare statements like while and for that execute other

statements repetitively.

• Jumpsare statements like break, return, and throw that cause the

interpreter tojump to another part of the program.

Expression Statements

The simplest kinds of statements in JavaScript are expressions that have

side effects.

greeting = "Hello " + name;
i *= 3;
alert(greeting);
window.close();

Statement block

A statement block is simply a sequence of statements enclosed within

curly braces.

{
x = Math.PI;
cx = Math.cos(x);
console.log("cos(π) = " + cx);
}

CONDITIONALS

A. If statement

The ifstatement is the fundamental control statement that allows

JavaScript to make decisions, or, more precisely, to execute statements

conditionally. This statement has two forms. The first is:

if (expression)
statement

In this form, expression is evaluated. If the resulting value is true,

statement is executed. If expression is false, statement is not executed.

if (username == null)
// If username is null or undefined,
username = "John Doe"; // define it

The second form of the if statement introduces an else clause that is

executed when expression is false. Its syntax is:

if (expression)
statement1
else
statement2

This form of the statement executes statement1 if expression is true

and executesstatement2 if expressionis false. For example:

Java Script

91 Self-Instruction Manual

Notes

if (n == 1)
console.log("You have 1 new message.");
else
console.log("You have " + n + " new messages.");

else ifis not really a JavaScript statement, but simply a frequently used

programming idiom that results when repeatedif/elsestatements are

used:

if (n == 1) {
// Execute code block #1
}
else if (n == 2) {
// Execute code block #2
}
else if (n == 3) {
// Execute code block #3
}
else {
// If all else fails, execute block #4
}

B. Switch statement

An ifstatement causes a branch in the flow of a program‘s execution, and

you can usethe else ifidiom to perform a multiway branch. This is not

the best solution, however,when all of the branches depend on the value of

the same expression. In this case, it iswasteful to repeatedly evaluate that

expression in multiple ifstatements.The switchstatement handles exactly

this situation. The switchkeyword is followedby an expression in

parentheses and a block of code in curly braces:

switch(expression) {
statements
}

For example,

switch(n) {

case 1: // Start here if n == 1
// Execute code block #1.
break;
// Stop here
case 2: // Start here if n == 2
// Execute code block #2.
break; // Stop here

case 3: // Start here if n == 3
// Execute code block #3.
break; // Stop here

Java Script

92 Self-Instruction Manual

Notes

default: // If all else fails...
// Execute code block #4.
break; // stop here
}

Note the breakkeyword used at the end of each case in the code above.

The breakstatement, causes the interpreter to jump to the end (or―break

out‖) of the switch statement and continue with the statement that follows

it. In the absence of breakstatements, aswitch statement begins

executing its block of code at the case label that matches the value of its

expressionand continues executing statements until it reaches the end

ofthe block.

LOOPS

A. while

Just as the ifstatement is JavaScript‘s basic conditional, the

whilestatement is Java Script‘s basic loop. It has the following syntax:

while (expression)
statement

To execute a whilestatement, the interpreter first evaluates expression.

If the value ofthe expression is false, then the interpreter skips over the

statementthat serves as theloop body and moves on to the next statement

in the program. If, on the other hand,the expression is true, the

interpreter executes the statementand repeats, jumpingback to the top of

the loop and evaluating expressionagain.

var count = 0;
while (count < 10)
{
console.log(count);
count++;
}

B. do/ while

The do/whileloop is like a whileloop, except that the loop expression

is tested at thebottom of the loop rather than at the top. This means that the

body of the loop is alwaysexecuted at least once. The syntax is:

do
statement
while (expression);

The do/whileloop is less commonly used than whilein practice, it is

somewhatuncommon to be certain that you want a loop to execute at least

once.

Java Script

93 Self-Instruction Manual

Notes

function printArray(a)
{
 var len = a.length, i = 0;
 if (len == 0)
 console.log("Empty Array");
 else {
 do {
 console.log(a[i]);
 } while (++i < len);
 }
}

C. for

The forstatement provides a looping construct that is often more

convenient than the whilestatement. The forstatement simplifies loops

that follow a common pattern. Most loops have a counter variable of some

kind. This variable is initialized before the loop starts and is tested before

each iteration of the loop. Finally, the counter variable is incremented or

otherwise updated at the end of the loop body, just before the variable is

tested again. In this kind of loop, the initialization, the test, and the update

are the three crucial manipulations of a loop variable. The forstatement

encodes each of these three manipulations as an expression and makes

those expressions an explicit part of the loop syntax:

for(initialize ; test ; increment)
statement

initialize, test, and incrementare three expressions (separated by

semicolons) that are responsible for initializing, testing, and incrementing

the loop variable. Putting them all in the first line of the loop makes it easy

to understand what a forloop is doing and prevents mistakes such as

forgetting to initialize or increment the loop variable.

var i,j;
for(i = 0, j = 10 ; i < 10 ; i++, j--)
sum += i * j;

D. for/in

The for/instatement uses the forkeyword, but it is a completely

different kind of loop than the regular forloop. A for/inloop looks like

this:

for (variable in object)
statement

For example,

for(var i = 0; i < a.length; i++)

Java Script

94 Self-Instruction Manual

Notes

// Assign array indexes to variable i

console.log(a[i]);
// Print the value of each array element

JUMPS

Another category of JavaScript statements are jump statements. As the

name implies,these cause the JavaScript interpreter to jump to a new

location in the source code. Thebreakstatement makes the interpreter

jump to the end of a loop or other statement.continuemakes the

interpreter skip the rest of the body of a loop and jump back to thetop of a

loop to begin a new iteration.

for(var i = 0; i < a.length; i++)
{
 if (a[i] == target) break;
}

JavaScript allows statements to be named, orlabeled, and the breakand

continuecan identify the target loop or other statement label.

Any statement may be labeledby preceding it with an identifier and a

colon:

identifier: statement

For example,

var matrix = getData();
// Get a 2D array of numbers from somewhere
// Now sum all the numbers in the matrix.
var sum = 0, success = false;
// Start with a labeled statement that we can
//break out of if errors occur

compute_sum: if (matrix)
{
for(var x = 0; x < matrix.length; x++)
{
 var row = matrix[x];
 if (!row) break compute_sum;
 for(var y = 0; y < row.length; y++)
 {
 var cell = row[y];
 if (isNaN(cell)) break compute_sum;
 sum += cell;
 }
}
success = true;
}

Java Script

Java Script

95 Self-Instruction Manual

Notes

// The break statements jump here.
// If we arrive here with success == false
// then there was something wrong with the matrix
// we were given.
// Otherwise sum contains the sum of all cells of
// the matrix.

4.7 OBJECTS

JavaScript is an Object Oriented Programming (OOP) language. A

programming language can be called object-oriented if it provides four

basic capabilities to developers

 Encapsulation − the capability to store related information,

whether data or methods, together in an object.

 Aggregation − the capability to store one object inside another

object.

 Inheritance − the capability of a class to rely upon another class

(or number of classes) for some of its properties and methods.

 Polymorphism − the capability to write one function or method

that works in a variety of different ways.

Objects are composed of attributes. If an attribute contains a function, it is

considered to be a method of the object; otherwise the attribute is

considered a property.

Object Properties

Object properties can be any of the three primitive data types, or any of

the abstract data types, such as another object. Object properties are

usually variables that are used internally in the object's methods, but can

also be globally visible variables that are used throughout the page.

The syntax for adding a property to an object is

objectName.objectProperty = propertyValue;

The following code gets the document title using the "title" property of

the document object.

var str = document.title;

Object Methods

Methods are the functions that let the object do something or let

something be done to it. There is a small difference between a function

and a method – at a function is a standalone unit of statements and a

method is attached to an object and can be referenced by

the this keyword.

Java Script

96 Self-Instruction Manual

Notes

Methods are useful for everything from displaying the contents of the

object to the screen to performing complex mathematical operations on a

group of local properties and parameters.

Following is a simple example to show how to use the write() method of

document object to write any content on the document.

document.write("This is test");

User-Defined Objects

All user-defined objects and built-in objects are descendants of an object

called Object.

A. The new Operator

The new operator is used to create an instance of an object. To create an

object, the new operator is followed by the constructor method.

In the following example, the constructor methods are Object(), Array(),

and Date(). These constructors are built-in JavaScript functions.

var employee = new Object();
var books = new Array("C++", "Perl", "Java");
var day = new Date("August 15, 1947");

B. The Object() Constructor

A constructor is a function that creates and initializes an object. JavaScript

provides a special constructor function called Object() to build the object.

The return value of the Object() constructor is assigned to a variable.

The variable contains a reference to the new object. The properties

assigned to the object are not variables and are not defined with

the var keyword.

<html>
<head>
<title>User-defined objects</title>
<script type = "text/javascript">
 var book = new Object();
 // Create the object
 book.subject = "Perl";
 // Assign properties to the object
 book.author = "Mohtashim";
</script>
</head>

<body>
<script type = "text/javascript">
 document.write("Book name is : " +
book.subject + "
");

Java Script

97 Self-Instruction Manual

Notes

 document.write("Book author is : " +
book.author + "
");
</script>

</body>
</html>

JavaScript Native Objects

JavaScript has several built-in or native objects. These objects are

accessible anywhere in your program and will work the same way in any

browser running in any operating system.

Here is the list of all important JavaScript Native Objects

 JavaScript Number Object

 JavaScript Boolean Object

 JavaScript String Object

 JavaScript Array Object

 JavaScript Date Object

 JavaScript Math Object

 JavaScript RegExp Object

4.8 MATHEMATICAL FUNCTIONS

The math object provides the properties and methods for mathematical

constants and functions. Unlike other global objects, Math is not a

constructor. All the properties and methods of Math are static and can be

called by using Math as an object without creating it.

Thus, the constant pi is referred as Math.PI and the function sine is called

as Math.sin(x), where x is the method's argument.

The syntax to call the properties and methods of Math are as follows

var pi_val = Math.PI;
var sine_val = Math.sin(30);

Here is a list of all the properties of Math and their description.

S.No. Property Description

1 E \ Euler's constant and the base of natural

Check Your Progress 1

1. List the features of DHTML

2. What about the complexity of dynamic webpages?

3. What are advantages of JavaScript?

4. What do you mean by an object?

5. What is a variable?

6. What is the difference between while and do loop?

Java Script

98 Self-Instruction Manual

Notes

logarithms, approximately 2.718.

2 LN2 Natural logarithm of 2, approximately 0.693.

3 LN10 Natural logarithm of 10, approximately 2.302.

4 LOG2E Base 2 logarithm of E, approximately 1.442.

5 LOG10E Base 10 logarithm of E, approximately 0.434.

6 PI Ratio of the circumference of a circle to its

diameter, approximately 3.14159.

7 SQRT1_2 Square root of 1/2; equivalently, 1 over the

square root of 2, approximately 0.707.

8 SQRT2 Square root of 2, approximately 1.414.

Here is a list of the methods associated with Math object and their

description

S. No. Method Description

1 abs() Returns the absolute value of a number.

2 acos()
Returns the arccosine (in radians) of a

number.

3 asin() Returns the arcsine (in radians) of a number.

4 atan()
Returns the arctangent (in radians) of a

number.

5 atan2()
Returns the arctangent of the quotient of its

arguments

6 ceil()
Returns the smallest integer greater than or equal
to a number.

7 cos() Returns the cosine of a number.

8 exp()

Returns E
N
, where N is the argument, and E is

Euler's constant, the base of the natural

logarithm.

9 floor()
Returns the largest integer less than or equal

to a number.

10 log()
Returns the natural logarithm (base E) of a

number.

11 max() Returns the largest of zero or more numbers.

12 min() Returns the smallest of zero or more numbers.

13 pow()
Returns base to the exponent power, that is,

base exponent.

14 random()
Returns a pseudo-random number between 0

and 1.

15 round()
Returns the value of a number rounded to the

nearest integer.

16 sin() Returns the sine of a number.

17 sqrt() Returns the square root of a number.

18 tan() Returns the tangent of a number.

19 toSource() Returns the string "Math".

Example 4.18

<html>

Java Script

99 Self-Instruction Manual

Notes

<head>
<title>JavaScript Math Methods</title>
</head>
<body>
<script type = "text/javascript">
 var value = Math.min(10, 20, -1, 100);
 document.write("First Test Value : " +
value);

 var value = Math.pow(8, 8);
 document.write("
Second Test Value :
" + value);

 var value = Math.random();
 document.write("
Third Test Value :
" + value);

 var value = Math.round(-20.3);
 document.write("
Fourth Test Value :
" + value);

 var value = Math.floor(10.3);
 document.write("Fifth Test Value : " +
value);

 var value = Math.toSource();
 document.write("Value : " + value);

</script>
</body>
</html>

4.9 STRING MANIPULATORS

Strings are used to represent text. Theyare written by enclosing their

content in quotes.

`Down on the sea`
"Lie on the ocean"
'Float on the ocean'

Sting object can be created using the following syntax

var val = new String(string);

Here is a list of the properties of String object and their description.

Java Script

100 Self-Instruction Manual

Notes

S.No. Property Description

1
constructor

Returns a reference to the String function that

created the object.

2 length Returns the length of the string.

3
prototype The prototype property allows you to add

properties and methods to an object.

Here is a list of the methods available in String object along with their

description.

S.No. Method Description

1 charAt()

Returns the character at the specified

index.

2 charCodeAt()

Returns a number indicating the

Unicode value of the character at the

given index.

3 concat()

Combines the text of two strings and
returns a new string.

4 indexOf()

Returns the index within the calling

String object of the first occurrence of

the specified value, or -1 if not found.

5 lastIndexOf()

Returns the index within the calling
String object of the last occurrence of

the specified value, or -1 if not found.

6 localeCompare()

Returns a number indicating whether a
reference string comes before or after

or is the same as the given string in

sort order.

7 match()

Used to match a regular expression
against a string.

8 replace()

Used to find a match between a

regular expression and a string, and to

replace the matched substring with a
new substring.

9 search()

Executes the search for a match

between a regular expression and a

specified string.

10 slice()

Extracts a section of a string and
returns a new string.

11 split()

Splits a String object into an array of

strings by separating the string into
substrings.

12 substr()

Returns the characters in a string

beginning at the specified location

through the specified number of
characters.

13 substring()

Returns the characters in a string

between two indexes into the string.

14 toLocaleLowerCase()

The characters within a string are
converted to lower case while

respecting the current locale.

Java Script

101 Self-Instruction Manual

Notes

15 toLocaleUpperCase()

The characters within a string are

converted to upper case while

respecting the current locale.

16 toLowerCase()

Returns the calling string value

converted to lower case.

17 toString()

Returns a string representing the

specified object.

18 toUpperCase()

Returns the calling string value

converted to uppercase.

19 valueOf()

Returns the primitive value of the
specified object.

Here is a list of the methods that return a copy of the string wrapped

inside an appropriate HTML tag.

S.No. Method Description

1 anchor()

Creates an HTML anchor that is used as a

hypertext target.

2 big()

Creates a string to be displayed in a big font as

if it were in a <big> tag.

3 blink()

Creates a string to blink as if it were in a

<blink> tag.

4 bold()

Creates a string to be displayed as bold as if it

were in a tag.

5 fixed()

Causes a string to be displayed in fixed-pitch

font as if it were in a <tt> tag

6 fontcolor()

Causes a string to be displayed in the specified

color as if it were in a <font
color="color"> tag.

7 fontsize()

Causes a string to be displayed in the specified

font size as if it were in a <font
size="size"> tag.

8 italics()

Causes a string to be italic, as if it were in an

<i> tag.

9 link()

Creates an HTML hypertext link that requests

another URL.

10 small()

Causes a string to be displayed in a small font,

as if it were in a <small> tag.

11 strike()

Causes a string to be displayed as struck-out

text, as if it were in a <strike> tag.

12 sub()

Causes a string to be displayed as a subscript,

as if it were in a <sub> tag

13 sup()

Causes a string to be displayed as a superscript,

as if it were in a <sup> tag

Example 4.18

<!DOCTYPE html>
<html>
<body>

Java Script

Java Script

102 Self-Instruction Manual

Notes

<h2>JavaScript String Methods</h2>

<p>The slice() method extract a part of a string
and returns the extracted parts in a new
string:</p>

<p id="demo"></p>

<p>The substr() method extract a part of a string
and returns the extracted parts in a new
string:</p>

<p id="demo1"></p>

<p>The search() method returns the position of the
first occurrence of a specified text in a
string:</p>

<p id="demo3"></p>

<p>Replace "Microsoft" with "W3Schools" in the
paragraph below:</p>

<button onclick="myFunction()">Try it</button>

<p id="demo2">Please visit Microsoft!</p>

<script>
var str = "Apple, Banana, Kiwi";

var res = str.slice(-12,-6);
document.getElementById("demo").innerHTML = res;

var res = str.substr(7);
document.getElementById("demo1").innerHTML = res;

var str = "Please locate where 'locate' occurs!";
var pos = str.search("locate");
document.getElementById("demo3").innerHTML = pos;

function myFunction() {
 var str =
document.getElementById("demo").innerHTML;
 var txt = str.replace("Microsoft","W3Schools");
 document.getElementById("demo2").innerHTML =
txt;
}
</script>
</body>
</html>

Java Script

103 Self-Instruction Manual

Notes

Output

4.10 ARRAYS

An arrayis an ordered collection of values. Each value is called an

element, and eachelement has a numeric position in the array, known as its

index.

 JavaScript arrays are untyped:

An array element may be of any type, and different elements of

the same array may be of different types. Array elements may

even be objects or other arrays, which allows you to create

complex data structures, such as arrays of objects and arrays of

arrays.

 JavaScript arrays are zero-basedand use 32-bit indexes:

The index of the first element is 0, and the highest possible

index is 4294967294 (232−2), for a maximum array size of

4,294,967,295 elements.

 JavaScript arrays are dynamic:

They grow or shrink as needed and there is no need to declare a

fixed size for the array when you create it or to reallocate it

when the size changes.

 JavaScript arrays may be sparse:

The elements need not have contiguous indexes and there may

be gaps. Every JavaScript array has a length property. For non-

sparse arrays, this property specifies the number of elements in

the array. For sparse arrays, length is larger than the index of all

elements.

Creating Arrays

The easiest way to create an array is with an array literal, which is simply a

commaseparatedlist of array elements within square brackets.

Java Script

104 Self-Instruction Manual

Notes

var empty = []; // An array with no elements
var primes = [2, 3, 5, 7, 11];
// An array with 5 numeric elements
var misc = [1.1, true, "a",];
// 3 elements of various types + trailing comma

The values in an array literal need not be constants; they may be arbitrary

expressions:

var base = 1024;
var table = [base, base+1, base+2, base+3];

Array literals can contain object literals or other array literals:

var b = [[1,{x:1, y:2}], [2, {x:3, y:4}]];

If you omit a value from an array literal, the omitted element is given the

value undefined:

var count = [1,,3];
// An array with 3 elements,
// the middle one undefined.
var undefs = [,,];
// An array with 2 elements, both undefined.

Array literal syntax allows an optional trailing comma, so [,,] has only

two elements, not three.

Another way to create an array is with the Array() constructor. You can

invoke this constructor in three distinct ways:

• Call it with no arguments:

var a = new Array();

This method creates an empty array with no elements and is equivalent to

the array literal [].

• Call it with a single numeric argument, which specifies a length:

var a = new Array(10);

This technique creates an array with the specified length. This form of the

Array() constructor can be used to pre-allocate an array when you know

in advance how many elements will be required. Note that no values are

stored in the array, and the array index properties ―0‖, ―1‖, and so on are

not even defined for the array.

• Explicitly specify two or more array elements or a single non-numeric

element for the array:

var a = new Array(5, 4, 3, 2, 1, "testing,
testing");

Java Script

105 Self-Instruction Manual

Notes

In this form, the constructor arguments become the elements of the new

array.Using an array literal is almost always simpler than this usage of the

Array() constructor.

Reading and Writing Array Elements

You access an element of an array using the [] operator. A reference to the

array shouldappear to the left of the brackets. An arbitrary expression that

has a non-negative integer value should be inside the brackets. You can use

this syntax to both read and write thevalue of an element of an array. Thus,

the following are all legal JavaScript statements:

var a = ["world"];
// Start with a one-element array

var value = a[0]; // Read element 0

a[1] = 3.14; // Write element 1

i = 2;
a[i] = 3; // Write element 2

a[i + 1] = "hello"; // Write element 3

a[a[i]] = a[0];
// Read elements 0 and 2, write element 3

Sparse Arrays

A sparse array is one in which the elements do not have contiguous

indexes starting at0. Normally, the length property of an array specifies the

number of elements in thearray. If the array is sparse, the value of the

length property is greater than the numberof elements. Sparse arrays can be

created with the Array() constructor or simply byassigning to an array

index larger than the current array length.

a = new Array(5);
// No elements, but a.length is 5.

a = [];
// Create an array with no elements & length = 0.

a[1000] = 0;
// Assignment adds one element but
// sets length to 1001.

The second special behaviour that arrays implement in order to maintain

the lengthinvariant is that if you set the length property to a non-negative

integer n smaller thanits current value, any array elements whose index is

greater than or equal to n are deletedfrom the array:

a = [1,2,3,4,5];
// Start with a 5-element array.

Java Script

106 Self-Instruction Manual

Notes

a.length = 3;
// a is now [1,2,3].
a.length = 0;
// Delete all elements. a is [].

a.length = 5;
// Length is 5, but no elements, like new Array(5)

You can also set the length property of an array to a value larger than its

current value.Doing this does not actually add any new elements to the

array; it simply creates asparse area at the end of the array.

Here is a list of the properties of the Array object along with their

description.

S.No. Property Description

1 constructor
Returns a reference to the array function that
created the object.

2 Index
The property represents the zero-based

index of the match in the string

3 Input
This property is only present in arrays

created by regular expression matches.

4 length Reflects the number of elements in an array.

5 prototype
The prototype property allows you to add

properties and methods to an object.

In the following sections, we will have a few examples to illustrate the

usage of Array properties.

Here is a list of the methods of the Array object along with their

description.

S.No. Method Description

1 concat()
Returns a new array comprised of this array
joined with other array(s) and/or value(s).

2 every()
Returns true if every element in this array

satisfies the provided testing function.

3 filter()
Creates a new array with all of the elements
of this array for which the provided filtering

function returns true.

4 forEach()
Calls a function for each element in the

array.

5 indexOf()
Returns the first (least) index of an element
within the array equal to the specified value,

or -1 if none is found.

6 join() Joins all elements of an array into a string.

7 lastIndexOf()
Returns the last (greatest) index of an
element within the array equal to the

specified value, or -1 if none is found.

8 map()
Creates a new array with the results of

calling a provided function on every

Java Script

107 Self-Instruction Manual

Notes

element in this array.

9 op()
Removes the last element from an array and

returns that element.

10 push()
Adds one or more elements to the end of an
array and returns the new length of the

array.

11 reduce()
Apply a function simultaneously against

two values of the array (from left-to-right)
as to reduce it to a single value.

12 reduceRight()
Apply a function simultaneously against

two values of the array (from right-to-left)

as to reduce it to a single value.

13 reverse()
Reverses the order of the elements of an

array -- the first becomes the last, and the

last becomes the first.

14 shift()
Removes the first element from an array
and returns that element.

15 slice()
Extracts a section of an array and returns a

new array.

16 some()
Returns true if at least one element in this

array satisfies the provided testing function.

17 toSource() Represents the source code of an object

18 sort() Sorts the elements of an array

19 splice()
Adds and/or removes elements from an

array.

20 toString()
Returns a string representing the array and
its elements.

21 unshift()
Adds one or more elements to the front of

an array and returns the new length of the

array.

Example 4.19

<html>
<head>
 <title>Arrays!!!</title>
 <script type="text/javascript">
 var students = new Array("John", "Ann",
"Aaron", "Edwin", "Elizabeth");

 Array.prototype.displayItems=function()
 {
 for (i=0;i<this.length;i++){
 document.write(this[i] + "
");
 }
 }
 document.write("Students Array Example

");

 students.displayItems();

Java Script

108 Self-Instruction Manual

Notes

 document.write("
The number of items
in students array is " + students.length + "
");
 document.write("
The SORTED students
array
");

 students.sort();
 students.displayItems();

 document.write("
The REVERSED
students array
");

 students.reverse();
 students.displayItems();

 document.write("
THE students array
after REMOVING the LAST item
");
 students.pop();
 students.displayItems();

 document.write("
THE students array
after PUSH
");
 students.push("New Stuff");
 students.displayItems();
 </script>

</head>
<body>
</body>
</html>

Output

Students Array Example
John
Ann
Aaron
Edwin
Elizabeth

The number of items in students array is 5

The SORTED students array
Aaron
Ann
Edwin
Elizabeth
John

The REVERSED students array
John
Elizabeth

Java Script

109 Self-Instruction Manual

Notes

Edwin
Ann
Aaron

THE students array after REMOVING the LAST item
John
Elizabeth
Edwin
Ann

THE students array after PUSH
John
Elizabeth
Edwin
Ann
New Stuff

4.11 FUNCTIONS

A function is a block of JavaScript code that is defined once but may be

executed, orinvoked, any number of times. You may already be familiar

with the concept of a functionunder a name such as subroutine or

procedure.

JavaScript functions are parameterized:a function definition may include a

list of identifiers, known as parameters thatwork as local variables for the

body of the function. Function invocations provide values,or arguments,

for the function‘s parameters. Functions often use their argumentvalues to

compute a return value that becomes the value of the function-

invocationexpression. In addition to the arguments, each invocation has

another value—theinvocation context—that is the value of the this

keyword.

If a function is assigned to the property of an object, it is known as a

method of thatobject. When a function is invoked on or through an object,

that object is the invocationcontext or this value for the function. Functions

designed to initialize a newly createdobject are called constructors.

Defining Functions

Functions are defined with the functionkeyword, which can be used in a

function definition expression or in a function declaration statement. In

either form, function definitions begin with the keyword

functionfollowed by these components:

 An identifier that names the function. The name is a required part

of function declaration statements: it is used as the name of a

variable, and the newly defined function object is assigned to the

variable. For function definition expressions, the name is

optional: if present, the name refers to the function object only

within the body of the function itself.

Java Script

110 Self-Instruction Manual

Notes

 A pair of parentheses around a comma-separated list of zero or

more identifiers. These identifiers are the parameter names for the

function, and they behave like local variables within the body of

the function.

 A pair of curly braces with zero or more JavaScript statements

inside. These statements are the body of the function: they are

executed whenever the function is invoked.

// Print the name and value of each property of o.
// Return undefined.

function printprops(o)
{
for(var p in o)
console.log(p + ": " + o[p] + "\n");
}

// Compute the distance between Cartesian points
//(x1,y1) and (x2,y2).

function distance(x1, y1, x2, y2)
{
var dx = x2 - x1;
var dy = y2 - y1;
return Math.sqrt(dx*dx + dy*dy);
}

// A recursive function (one that calls itself)
// that computes factorials
// Recall that x! is the product of x and all
// positive integers less than it.

function factorial(x)
{
if (x <= 1) return 1;
return x * factorial(x-1);
}

// This function expression defines a function
// that squares its argument.
// Note that we assign it to a variable

var square = function(x) { return x*x; }

// Function expressions can include names, which
// is useful for recursion.

var f = function fact(x)
{
 if (x <= 1)
 return 1;

Java Script

111 Self-Instruction Manual

Notes

 else
 return x*fact(x-1);
};
// Function expressions can also be used as
// arguments to other functions:

data.sort(function(a,b) { return a-b; });

// Function expressions are sometimes defined and
// immediately invoked:

var tensquared = (function(x) {return x*x;}(10));

Note that the function name is optional for functions defined as

expressions. A functiondeclaration statement actually declares a variable

and assigns a function object to it. Afunction definition expression, on the

other hand, does not declare a variable. A nameis allowed for functions,

like the factorial function above, that need to refer to themselves.If a

function definition expression includes a name, the local function scope

forthat function will include a binding of that name to the function object.

In effect, thefunction name becomes a local variable within the function.

Most functions defined asexpressions do not need names, which makes

their definition more compact.

Nested Functions

In JavaScript, functions may be nested within other functions. For

example:

function hypotenuse(a, b)
{

function square(x)
{ return x*x; }

return Math.sqrt(square(a) + square(b));

}

The interesting thing about nested functions is their variable scoping rules:

they canaccess the parameters and variables of the function (or functions)

they are nested within.In the code above, for example, the inner function

square() can read and write theparameters a and b defined by the outer

function hypotenuse().

Invoking Functions

The JavaScript code that makes up the body of a function is not executed

when thefunction is defined but when it is invoked. JavaScript functions

can be invoked in fourways:

• as functions,

Java Script

112 Self-Instruction Manual

Notes

• as methods,

• as constructors, and

• Indirectly through their call()and apply()methods.

The following code includes a number of regular function

invocationexpressions:

printprops({x:1});
var total = distance(0,0,2,1) + distance(2,1,3,5);
var probability = factorial(5)/factorial(13);

In an invocation, each argument expression (the ones between the

parentheses) is evaluated,and the resulting values become the arguments to

the function. These values areassigned to the parameters named in the

function definition. In the body of the function,a reference to a parameter

evaluates to the corresponding argument value.

A method is nothing more than a JavaScript function that is stored in a

property of an object. If you have a function f and an object o, you can

define a method named m of o with the following line:

o.m = f;

Having defined the method m() of the object o, invoke it like this:

o.m();

Or, if m() expects two arguments, you might invoke it like this:

o.m(x, y);

If a function or method invocation is preceded by the keyword new, then it

is a constructor invocation. Constructor invocations differ from regular

function and method invocations in their handling of arguments, invocation

context, and return value.

If a constructor invocation includes an argument list in parentheses, those

argument expressions are evaluated and passed to the function in the same

way they would be for function and method invocations. But if a

constructor has no parameters, then JavaScript constructor invocation

syntax allows the argument list and parentheses to be omitted entirely. You

can always omit a pair of empty parentheses in a constructor invocation

and the following two lines, for example, are equivalent:

var o = new Object();
var o = new Object;

Constructor functions do not normally use the return keyword. They

typically initialize the new object and then return implicitly when they

reach the end of their body.

JavaScript functions are objects and like all JavaScript objects, they have

methods. Twoof these methods, call() and apply(),invoke the

Java Script

113 Self-Instruction Manual

Notes

function indirectly. Both methodsallow you to explicitly specify the this

value for the invocation, which means you caninvoke any function as a

method of any object, even if it is not actually a method ofthat object. Both

methods also allow you to specify the arguments for the invocation.

The call() method uses its own argument list as arguments to the

function and theapply() method expects an array of values to be used as

arguments.

To invoke the function f() as amethod of the object o (passing no

arguments), you could use either call()or apply():

f.call(o);
f.apply(o);

Example 4.20

<!DOCTYPE html>
<html>
<body>

<h2>JavaScript Functions</h2>

<p>This example calls a function to convert from
Fahrenheit to Celsius:</p>
<p id="demo"></p>

<script>
function toCelsius(f) {
 return (5/9) * (f-32);
}
document.getElementById("demo").innerHTML =
toCelsius(77);
</script>

</body>
</html>

Output

JavaScript Functions

This example calls a function to convert from
Fahrenheit to Celsius:

25

Example 4.21

<html>
<head>
<script type = "text/javascript">
 function sayHello(name, age)

Java Script

114 Self-Instruction Manual

Notes

 {
 document.write (name + " is " + age +
" years old.");
 }
</script>
</head>

<body>
<p>Click the following button to call the
function</p>

<form>
<input type = "button" onclick = "sayHello('Zara',
7)" value = "Say Hello">
</form>
<p>Use different parameters inside the function
and then try...</p>

</body>
</html>

Output

4.12 ANSWERS TO CHECK YOUR PROGRESS

1. Features of DHTML are

i. Dynamic content

ii. Dynamic style

iii. Dynamic positioning

iv. Dynamic binding

Check Your Progress 2

1. What is an array?

2. List the characteristics of JavaScript arrays.

3. What is the purpose of length method?

4. What do you mean by function?

5. How will you invoke functions?

6. What is the purpose of constructors?

Java Script

115 Self-Instruction Manual

Notes

2. Client side scripting involves medium complexity.Server side

scripting involves high complexity of two parts

3. Advantages of JavaScript are

 Less server interaction

 Immediate feedback to visitors

 Increased interactivity

 Richer interfaces

4. An object (that is, a member of the type object) is a collection of

properties where each property has a name and a value (either a

primitive value, such as a number or string, or an object).

5. A variable defines a symbolic name for a value and allows the

value to bereferred to by name

6. The body of the loop is always executed at least once for do loop.

The body of the while loop will be executed only if the condition

is satisfied.

7. An arrayis an ordered collection of values. Each value is called

an element, and eachelement has a numeric position in the array,

known as its index

8. Characteristics of JavaScript arrays are

 untyped

 zero based

 dynamic

 sparse

9. The length method is used to reflect the number of elements in

an array.

10. A function is a block of JavaScript code that is defined once but

may be executed, orinvoked, any number of times.

11. JavaScript functions can be invoked in four ways:

i. as functions,

ii. as methods,

iii. as constructors, and

iv. Indirectly through their call()and apply()methods

12. Constructor functions do not normally use the return keyword.

They typically initialize the new object and then return

implicitly when they reach the end of their body

Java Script

116 Self-Instruction Manual

Notes

4.13 LET US SUM UP

DHTML, refers to the technique of making Web pages dynamic by

client-side scripting to manipulate the document content and

presentation

The characteristics of JavaScript are

 JavaScript is a lightweight, interpreted programming language.

 Designed for creating network-centric applications.

 Complementary to and integrated with Java.

 Complementary to and integrated with HTML.

 Open and cross-platform

JavaScript programs are written using the Unicode character set

JavaScript ignores spaces, tabs, and newlines that appear in JavaScript

programs.

Simple statements in JavaScript are generally followed by a semicolon

character, just as they are in C, C++, and Java. JavaScript, however,

allows us to omit this semicolon if each of our statements is placed on a

separate line.

JavaScript is a case-sensitive language.

JavaScript is object-oriented.

The JavaScript interpreter performs automatic garbage collection for

memory management.

An identifieris simply a name. In JavaScript, identifiers are used to

name variables andfunctions and to provide labels for certain loops in

JavaScript code.

A JavaScript identifiermust begin with

 a letter,

 an underscore (_), or

 a dollar sign ($).

JavaScript types can be divided into two categories: primitive typesand

object types.

An object (that is, a member of the type object) is a collection of

properties where each property has a name and a value (either a

primitive value, such as a number or string, or an object).

JavaScript types can also be categorized as mutableand immutabletypes

JavaScript variables have only two scopes.

 Global Variables − A global variable has global scope which

means it can be defined anywhere in the JavaScript code.

 Local Variables − A local variable will be visible only within a

function where it is defined. Function parameters are always

local to that function

Java Script

117 Self-Instruction Manual

Notes

JavaScript supports the following types of operators.

 Arithmetic Operators

 Comparison Operators

 Logical (or Relational) Operators

 Assignment Operators

 Conditional (or ternary) Operators

Conditionals are statements like if and switch that makes the JavaScript

interpreter execute or skip other statements depending on the value of

an expression.

Loops are statements like while and for that execute other statements

repetitively.

Jumps are statements like break, return, and throw that cause the

interpreter to jump to another part of the program.

JavaScript has several built-in or native objects. Here is the list of all

important JavaScript Native Objects

 JavaScript Number Object

 JavaScript Boolean Object

 JavaScript String Object

 JavaScript Array Object

 JavaScript Date Object

 JavaScript Math Object

 JavaScript RegExp Object

The math object provides the properties and methods for mathematical

constants and functions.

Strings are used to represent text. They are written by enclosing their

content in quotes.

An arrayis an ordered collection of values. Each value is called an

element, and eachelement has a numeric position in the array, known as

its index

A sparse array is one in which the elements do not have contiguous

indexes starting at0.

A function is a block of JavaScript code that is defined once but may be

executed, orinvoked, any number of times.

JavaScript functions are parameterized:a function definition may

include a list of identifiers, known as parameters thatwork as local

variables for the body of the function

A method is nothing more than a JavaScript function that is stored in a

property of an object.

Java Script

118 Self-Instruction Manual

Notes

Constructor functions do not normally use the return keyword. They

typically initialize the new object and then return implicitly when they

reach the end of their body

4.14 SELF-ASSESSMENT EXERCISES

Short Questions

1. What do you mean by primitive data types?

2. What are object types?

3. List any two mathematical functions

4. What are strings?

5. How to define scope of variables in JavaScript?

6. Describe any two methods for arrays.

7. How to define functions in JavaScript?

Detail Questions

1. Write a note on variables.

2. Discuss about the JavaScript Statements.

3. Explain in detail about loops.

4. Write a program to demonstrate the working of string functions

5. Explain the mathematical functions available in JavaScript.

6. Discuss in detail about arrays in JavaScript.

7. Describe about writing user defined functions in JavaScript.

4.15SUGGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. www.w3schools.com

6. JavaScript: The Definitive Guide, 6th Edition, David Flanagan,

O‘Reilly Media, 2011.

7. Eloquent JavaScript, 3rd edition, Marijn Haverbeke, 2018

Java Script

119 Self-Instruction Manual

Notes

UNIT- 5 COOKIES AND EVENTS

Structure

5.0 Introduction

5.1 Objectives

5.2 Regular Expressions

5.3 Cookies

5.4 Events

5.5 Answers to Check Your Progress

5.6 Let us Sum up

5.7 Self-Assessment Exercises

5.8 Suggested Readings

5.0 INTRODUCTION

The communication between a web browser and server happens using a

stateless protocol named HTTP. The inputs from the users need to be

validated before sending the request. A regular expression is an object that

describes a pattern of characters. This will be used to validate the inputs.

Also Stateless protocol treats each request independent. So, the server does

not keep the data after sending it to the browser. But in many situations,

the data will be required again. Here come cookies into a

picture.JavaScript's interaction with HTML is handled through events that

occur when the user or the browser manipulates a page. This unit will

describe about the regular expression, cookies and events.

5.1 OBJECTIVES

After going through this unit, you will be able to:

 Learn the need for regular expressions

 Understand how to handle cookies using JavaScript

 Know the basics of event handling in JavaScript

5.2 REGULAR EXPRESSIONS

Regularexpressions are a way to describe patterns in string data. They form

a small,separate language that is part of JavaScript and many other

languages andsystems.Regular expressions are both terribly awkward and

extremely useful.

A regular expression is an object that describes a pattern of characters.

Cookies and Events

120 Self-Instruction Manual

Notes

The JavaScript RegExp class represents regular expressions, and both

String and RegExp define methods that use regular expressions to

perform powerful pattern-matching and search-and-replace functions on

text.

Syntax

A regular expression could be defined with the RegExp() constructor, as

follows

var pattern = new RegExp(pattern, attributes);

or simply

var pattern = /pattern/attributes;

Here is the description of the parameters

 pattern − A string that specifies the pattern of the regular

expression or another regular expression.

 attributes − An optional string containing any of the "g",

"i", and "m" attributes that specify global, case-insensitive, and

multi-line matches, respectively.

let re1 = new RegExp("abc");
let re2 = /abc/;

Brackets

Brackets ([]) have a special meaning when used in the context of regular

expressions. They are used to find a range of characters.

S. No. Expression Description

1 [...] Any one character between the brackets.

2 [^...] Any one character not between the brackets.

3 [0-9] It matches any decimal digit from 0 through 9.

4 [a-z]
It matches any character from

lowercase a through lowercase z.

5 [A-Z]
It matches any character from

uppercase A through uppercase Z.

6 [a-Z]
It matches any character from

lowercase a through uppercase Z.

The ranges [0-3]is used to match any decimal digit ranging from 0

through 3, or the range [b-v]is used to match any lowercase character

ranging from b through v.

Quantifiers

The frequency or position of bracketed character sequences and single

characters can be denoted by a special character. Each special character has

a specific connotation. The +, *, ?, and $ flags all follow a character

sequence.

Cookies and Events

121 Self-Instruction Manual

Notes

S. No. Expression Description

1 p+
It matches any string containing one or

more p's.

2 p*
It matches any string containing zero or
more p's.

3 p?
It matches any string containing at most

one p.

4 p{N}
It matches any string containing a
sequence of N p's

5 p{2,3}
It matches any string containing a

sequence of two or three p's.

6 p{2, }
It matches any string containing a

sequence of at least two p's.

7 p$
It matches any string with p at the end of

it.

8 ^p
It matches any string with p at the

beginning of it.

Examples

S. No. Expression Description

1 [^a-zA-Z]
It matches any string not containing any

of the characters ranging

from a through z and A through Z.

2 p.p
It matches any string
containing p, followed by any character,

in turn followed by another p.

3 ^.{2}$
It matches any string containing exactly

two characters.

4 (.*)
It matches any string enclosed within

 and .

5 p(hp)*
It matches any string containing

a p followed by zero or more instances
of the sequence hp.

Literal characters

S. No. Character Description

1 Alphanumeric Itself

2 \0 The NUL character (\u0000)

3 \t Tab (\u0009

4 \n Newline (\u000A)

5 \v Vertical tab (\u000B)

6 \f Form feed (\u000C)

7 \r Carriage return (\u000D)

8 \xnn
The Latin character specified by the
hexadecimal number nn; for example,

\x0A is the same as \n

9 \uxxxx
The Unicode character specified by the

hexadecimal number xxxx; for example,
\u0009 is the same as \t

10 \cX
The control character ^X; for example, \cJ

is equivalent to the newline character \n

Cookies and Events

122 Self-Instruction Manual

Notes

Metacharacters

A metacharacter is simply an alphabetical character preceded by a

backslash that acts to give the combination a special meaning.

S. No. Character Description

1 . a single character

2 \s
a whitespace character (space, tab,

newline)

3 \S non-whitespace character

4 \d a digit (0-9)

5 \D a non-digit

6 \w a word character (a-z, A-Z, 0-9, _)

7 \W a non-word character

8 [\b] a literal backspace (special case).

9 [aeiou]
matches a single character in the given

set

10 [^aeiou]
matches a single character outside the

given set

11 (foo|bar|baz)
matches any of the alternatives

specified

/\d{2,4}/
// Match between two and four digits

/\w{3}\d?/
// Match exactly three word characters and an
// optional digit

/\s+java\s+/
// Match "java" with one or more spaces
// before and after

/[^(]*/

// Match zero or more characters that are not
// open parenthesis

Modifiers

Several modifiers are available that can simplify the way you work

with regexps, like case sensitivity, searching in multiple lines, etc.

S.No. Modifier Description

1 i Perform case-insensitive matching.

2 m Specifies that if the string has newline or carriage

return characters, the ^ and $ operators will now

match against a newline boundary, instead of a

string boundary

3 g Performs a global matchthat is, find all matches

rather than stopping after the first match.

Cookies and Events

123 Self-Instruction Manual

Notes

RegExp Properties

S. No. Property Description

1 constructor
Specifies the function that creates an

object's prototype.

2 Global Specifies if the "g" modifier is set.

3 ignoreCase Specifies if the "i" modifier is set.

4 lastIndex
The index at which to start the next

match.

5 Multiline Specifies if the "m" modifier is set.

6 source The text of the pattern.

RegExp Methods

S.No. Method Description

1 exec()
Executes a search for a match in its

string parameter.

2 test() Tests for a match in its string parameter.

3 toSource()
Returns an object literal representing the

specified object; you can use this value

to create a new object.

4 toString()
Returns a string representing the
specified object.

Example 5.1

<!DOCTYPE html>
<html>
<body>

<p>
Search for the characters

"LO"

in the beginning of a word in
the phrase:

"HELLO, LOOK AT YOU!"
</p>

<p>Found in position: </p>

<script>
var str = "HELLO, LOOK AT YOU!";
var patt1 = /\bLO/;
var result = str.search(patt1);
document.getElementById("demo").innerHTML =
result;
</script>

</body>
</html>

Cookies and Events

124 Self-Instruction Manual

Notes

Output

Search for the characters
"LO"
in the beginning of a word in the phrase:
"HELLO, LOOK AT YOU!"
Found in position: 7

Example 5.2

<!DOCTYPE html>
<html>
<body>
<p>Click the button to do a global search for any
of the specified alternatives (red|green).</p>

<button onclick="myFunction()">Try it</button>

<p id="demo"></p>

<script>
function myFunction() {
 var str = "re, green, red, green, gren, gr,
blue, yellow";
 var patt1 = /(red|gr*)/g;
 var result = str.match(patt1);
 document.getElementById("demo").innerHTML =
result;
}
</script>

</body>
</html>

Output

5.3COOKIES

The communication between a web browser and server happens using a

stateless protocol named HTTP. Stateless protocol treats each request

independent. So, the server does not keep the data after sending it to the

browser. But in many situations, the data will be required again. Here

come cookies into a picture. With cookies, the web browser will not have

to communicate with the server each time the data is required. Instead, it

can be fetched directly from the computer.

Cookies and Events

125 Self-Instruction Manual

Notes

A cookie is a piece of data that is stored on our computer to be accessed by

our browser.

In many situations, using cookies is the most efficient method of

remembering and tracking preferences, purchases, commissions, and other

information required for better visitor experience or site statistics.

The server sends some data to the visitor's browser in the form of a

cookie. The browser may accept the cookie. If it does, it is stored as a

plain text record on the visitor's hard drive. Now, when the visitor arrives

at another page on the site, the browser sends the same cookie to the

server for retrieval. Once retrieved, the server knows/remembers what

was stored earlier.

Cookies are a plain text data record of 5 variable-length fields

 Expires − The date the cookie will expire. If this is blank, the

cookie will expire when the visitor quits the browser.

 Domain − The domain name of your site.

 Path − The path to the directory or web page that set the

cookie. This may be blank if you want to retrieve the cookie

from any directory or page.

 Secure − If this field contains the word "secure", then the

cookie may only be retrieved with a secure server. If this field

is blank, no such restriction exists.

 Name=Value − Cookies are set and retrieved in the form of

key-value pairs

Cookies were originally designed for CGI programming. The data

contained in a cookie is automatically transmitted between the web

browser and the web server, so CGI scripts on the server can read and

write cookie values that are stored on the client.

JavaScript can also manipulate cookies using the cookie property of

the Document object. JavaScript can read, create, modify, and delete the

cookies that apply to the current web page.

Storing Cookies

The simplest way to create a cookie is to assign a string value to the

document.cookie object

document.cookie = "key1 = value1;key2 =
value2;expires = date";

Here the expires attribute is optional. If you provide this attribute with a

valid date or time, then the cookie will expire on a given date or time and

thereafter, the cookies' value will not be accessible.

Cookies and Events

126 Self-Instruction Manual

Notes

Example 5.3 – Setting Cookies

<html>
<head>
<script type = "text/javascript">
<!--
function WriteCookie() {
 if(document.myform.customer.value == "") {
 alert("Enter some value!");
 return;
 }
 cookievalue =
escape(document.myform.customer.value) + ";";
 document.cookie = "name=" + cookievalue;
 document.write ("Setting Cookies : " + "name="
+ cookievalue);
}
//-->
</script>
</head>

<body>
<form name = "myform" action = "">
Enter name: <input type = "text" name =
"customer"/>
<input type = "button" value = "Set Cookie"
onclick = "WriteCookie();"/>
</form>
</body>
</html>

Output

Reading Cookies

Reading a cookie is just as simple as writing one, because the value of the

document.cookie object is the cookie. So we can use this string

whenever we want to access the cookie. The document.cookie string

will keep a list of name=value pairs separated by semicolons,

where name is the name of a cookie and value is its string value. The

split() function is used to break a string into key and values.

Cookies and Events

127 Self-Instruction Manual

Notes

Example 5.4 – Getting Cookie values

<html>
<head>
<script type = "text/javascript">
<!--
function ReadCookie() {
var allcookies = document.cookie;
document.write ("All Cookies : " + allcookies);

// Get all the cookies pairs in an array
cookiearray = allcookies.split(';');

// Now take key value pair out of this array
for(var i=0; i<cookiearray.length; i++) {
 name = cookiearray[i].split('=')[0];
 value = cookiearray[i].split('=')[1];
 document.write ("Key is : " + name + " and
Value is : " + value);
}
}
//-->
</script>
</head>

<body>
<form name = "myform" action = "">
<p> click the following button and see the
result:</p>
<input type = "button" value = "Get Cookie"
onclick = "ReadCookie()"/>
</form>
</body>
</html>

Example 5.5 – Setting Cookie expiry Date

<html>
<head>
<script type = "text/javascript">
<!--
function WriteCookie() {
var now = new Date();
now.setMonth(now.getMonth() + 1);
cookievalue =
escape(document.myform.customer.value) + ";"

document.cookie = "name=" + cookievalue;

Cookies and Events

128 Self-Instruction Manual

Notes

document.cookie = "expires=" + now.toUTCString() +
";"
document.write ("Setting Cookies : " + "name=" +
cookievalue);
}
//-->
</script>
</head>

<body>
<form name = "myform" action = "">
Enter name: <input type = "text" name =
"customer"/>
<input type = "button" value = "Set Cookie"
onclick = "WriteCookie()"/>
</form>
</body>
</html>

Example 5.6 – Deleting Cookie

<html>
<head>
<script type = "text/javascript">
<!--
function WriteCookie() {
var now = new Date();
now.setMonth(now.getMonth() - 1);
cookievalue =
escape(document.myform.customer.value) + ";"
document.cookie = "name=" + cookievalue;
document.cookie = "expires=" + now.toUTCString() +
";"
document.write("Setting Cookies : " + "name=" +
cookievalue);
}
//-->
</script>
</head>
<body>
<form name = "myform" action = "">
Enter name: <input type = "text" name =
"customer"/>
<input type = "button" value = "Set Cookie"
onclick = "WriteCookie()"/>
</form>
</body>
</html>

Cookies and Events

129 Self-Instruction Manual

Notes

5.4EVENTS

Some programs work with direct user input, such as mouse and keyboard

actions.That kind of input isn‘t available as a well-organized data structure

- itcomes in piece by piece, in real time, and the program is expected to

respondto it as it happens.

A better mechanism is for the system to actively notify our code when

anevent occurs. Browsers do this by allowing us to register functions as

handlersfor specific events.JavaScript's interaction with HTML is handled

through events that occur when the user or the browser manipulates a page.

When the page loads, it is called an event. When the user clicks a button,

that click too is an event. Other examples include events like pressing any

key, closing a window, resizing a window, etc.

Example 5.8

<html>
<head>
<script type = "text/javascript">
function getValue()
{
var retVal = prompt("Enter your name : ", "your
name here");
document.write("You have entered : " + retVal);
}
</script>
</head>
<body>
<p>Click the following button to see the result:
</p>
<form><input type = "button" value = "Click Me"
onclick = "getValue();" />
</form>
</body>
</html>

Example 5.9

<html>
<head>
<title>registration</title>
<script type="text/javascript">
function validate()
{
if(document.myForm.fname.value=="")
{
alert("please provide your first name!");

Cookies and Events

130 Self-Instruction Manual

Notes

document.myForm.fname.focus();
return false;
}
if(document.myForm.lastname.value=="")
{
alert("please provide your lastname!");
document.myForm.lastname.focus();
return false;
}
if(document.myForm.email.value=="")
{
alert("please provide your email!");
document.myForm.email.focus();
return false;
}

var x=document.forms["myForm"]["email"].value;
var atpos=x.indexOf("@");
var dotpos=x.lastIndexOf(".");
if(atpos<1||dotpos<atpos+2||dotpos+2>=x.length)
{
alert("not a valid e-mail address");
return false;
}
if(document.myForm.phone.value=="")
{
alert("please provide your phone number");
return false;
}
if(isNaN(document.myForm.phone.value))
{
alert("Phone number should be numeric");
document.myForm.phone.focus()
return false;
}
alert("register success!");
}
</script>
</head>
<body bgcolor="pink">

// ONSUBMIT event

<form name="myForm"
onsubmit="return(validate());">

<center><h1>REGISTRATION FORM-DEMO</h1>
<table cellspacing="2" cellpadding="2" border="1">
<tr>
<td align="right">name</td>

Cookies and Events

131 Self-Instruction Manual

Notes

<td><input type="text" name="fname"/></td></tr>
<tr><td align="right">lastname</td>
<td><input type="text" name="lastname"/></td></tr>
<tr><td align="right">email</td>
<td><input type="text" name="email"/></td></tr>
<tr><td align="right">phone number</td>
<td><input type="text" name="phone"
id="phone"/></td></tr>
<tr><td align="right"></td>
<td><input type="submit"
value="submit"/></td></tr>
</table>
</center>
</form>
</html>

Output

Example 5.10

<html>
<head>
<script type = "text/javascript">
<!--
function over() {
document.write ("Mouse Over");
}
function out() {
document.write ("Mouse Out");
}
//-->
</script>
</head>
<body>
<p>Bring your mouse inside the division to see the
result:</p>
<div onmouseover = "over()" onmouseout = "out()">
<h2> This is inside the division </h2>
</div>
</body>
</html>

Cookies and Events

132 Self-Instruction Manual

Notes

The standard HTML 5 events are listed here for your reference. Here script

indicates a JavaScript function to be executed against that event.

Attribute Description

Offline Triggers when the document goes offline

Onabort Triggers on an abort event

onafterprint Triggers after the document is printed

onbeforeonload Triggers before the document loads

onbeforeprint Triggers before the document is printed

onblur Triggers when the window loses focus

oncanplay Triggers when media can start play, but might

has to stop for buffering

oncanplaythrough Triggers when media can be played to the end,

without stopping for buffering

onchange Triggers when an element changes

onclick Triggers on a mouse click

oncontextmenu Triggers when a context menu is triggered

ondblclick Triggers on a mouse double-click

ondrag Triggers when an element is dragged

ondragend Triggers at the end of a drag operation

ondragenter Triggers when an element has been dragged to a

valid drop target

ondragleave Triggers when an element is being dragged over

a valid drop target

ondragover Triggers at the start of a drag operation

ondragstart Triggers at the start of a drag operation

ondrop Triggers when dragged element is being dropped

ondurationchange Triggers when the length of the media is changed

onemptied Triggers when a media resource element

suddenly becomes empty.

onended Triggers when media has reach the end

onerror Triggers when an error occur

onfocus Triggers when the window gets focus

onformchange Triggers when a form changes

onforminput Triggers when a form gets user input

onhaschange Triggers when the document has change

oninput Triggers when an element gets user input

oninvalid Triggers when an element is invalid

onkeydown Triggers when a key is pressed

onkeypress Triggers when a key is pressed and released

onkeyup Triggers when a key is released

onload Triggers when the document loads

onloadeddata Triggers when media data is loaded

onloadedmetadata Triggers when the duration and other media data

of a media element is loaded

onloadstart Triggers when the browser starts to load the

media data

Cookies and Events

133 Self-Instruction Manual

Notes

onmessage Triggers when the message is triggered

onmousedown Triggers when a mouse button is pressed

onmousemove Triggers when the mouse pointer moves

onmouseout Triggers when the mouse pointer moves out of an

element

onmouseover Triggers when the mouse pointer moves over an

element

onmouseup Triggers when a mouse button is released

onmousewheel Triggers when the mouse wheel is being rotated

onoffline Triggers when the document goes offline

onoine Triggers when the document comes online

ononline Triggers when the document comes online

onpagehide Triggers when the window is hidden

onpageshow Triggers when the window becomes visible

onpause Triggers when media data is paused

onplay Triggers when media data is going to start

playing

onplaying Triggers when media data has start playing

onpopstate Triggers when the window's history changes

onprogress Triggers when the browser is fetching the media

data

onratechange Triggers when the media data's playing rate has

changed

onreadystatechange Triggers when the ready-state changes

onredo Triggers when the document performs a redo

onresize Triggers when the window is resized

onscroll Triggers when an element's scrollbar is being

scrolled

onseeked Triggers when a media element's seeking

attribute is no longer true, and the seeking has

ended

onseeking Triggers when a media element's seeking

attribute is true, and the seeking has begun

onselect Triggers when an element is selected

onstalled Triggers when there is an error in fetching media

data

onstorage Triggers when a document loads

onsubmit Triggers when a form is submitted

onsuspend Triggers when the browser has been fetching

media data, but stopped before the entire media

file was fetched

ontimeupdate Triggers when media changes its playing position

onundo Triggers when a document performs an undo

onunload Triggers when the user leaves the document

onvolumechange Triggers when media changes the volume, also

when volume is set to "mute"

onwaiting Triggers when media has stopped playing, but is

expected to resume

Cookies and Events

134 Self-Instruction Manual

Notes

5.5 ANSWERS TO CHECK YOUR PROGRESS

1. A regular expression is an object that describes a pattern of

characters

2. A cookie is a piece of data that is stored on our computer to be

accessed by our browser

3. JavaScript's interaction with HTML is handled through events

that occur when the user or the browser manipulates a page

5.6LET US SUM UP

A regular expression is an object that describes a pattern of characters

A regular expression could be defined with

the RegExp() constructor, as follows

var pattern = new RegExp(pattern, attributes);
or simply

var pattern = /pattern/attributes;

A pattern is a string that specifies the pattern of the regular

expression or another regular expression.

A metacharacter is simply an alphabetical character preceded by a

backslash that acts to give the combination a special meaning.

A cookie is a piece of data that is stored on our computer to be accessed

by our browser

Cookies are a plain text data record of 5 variable-length fields

 Expires − The date the cookie will expire. If this is blank, the

cookie will expire when the visitor quits the browser.

 Domain − The domain name of your site.

 Path − The path to the directory or web page that set the

cookie. This may be blank if you want to retrieve the cookie

from any directory or page.

Check Your Progress

1. State the purpose of regular expressions.

2. What do you mean by cookie?

3. What is the purpose of events?

Cookies and Events

135 Self-Instruction Manual

Notes

 Secure − If this field contains the word "secure", then the

cookie may only be retrieved with a secure server. If this field

is blank, no such restriction exists.

 Name=Value − Cookies are set and retrieved in the form of

key-value pairs

The simplest way to create a cookie is to assign a string value to the

document.cookie object

JavaScript's interaction with HTML is handled through events that

occur when the user or the browser manipulates a page

5.7 SELF-ASSESSMENT EXERCISES

Short Questions

1. What is the purpose of using regular expressions?

2. What do you mean by modifiers?

3. Write the statement for setting a cookie

4. How to delete a cookie?

5. What is the advantage of using cookies?

6. What is an event?

7. List some of the events supported in HTML 5.

Detail Questions

1. Discuss in detail about regular expressions.

2. With suitable examples explain about cookies.

3. Describe about handling events in JavaScript.

5.8SUGGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. www.w3schools.com

6. JavaScript: The Definitive Guide, 6th Edition, David Flanagan,

O‘Reilly Media, 2011.

7. Eloquent JavaScript, 3rd edition, Marijn Haverbeke, 2018

Cookies and Events

136 Self-Instruction Manual

Notes

UNIT -6 DYNAMIC HTML WITH

JAVASCRIPT

Structure

6.0 Introduction

6.1 Objectives

6.2 Data Validation

6.3 Messages and Confirmation

6.4 Writing to a different frame

6.5 Rollover buttons

6.6 Moving images

6.7 Answers to Check Your Progress

6.8 Let us Sum up

6.9 Self-Assessment Exercises

6.10 Suggested Readings

6.0 INTRODUCTION

Forms are used in webpages for the user to enter their required details that

are further sending it to the server for processing. A form is also known as

web form or HTML form. The data submitted to the server need to be

validated before processing. Data validation is the process of ensuring

that users need to submit only the set of characters which are required for

processing. Messages and confirmations are used for this purpose.

Sometimes we need to give the responses into different frames for this.

This unit will deals about the above mentioned topics.

6.1 OBJECTIVES

After going through this unit, you will be able to:

 Learn the need for data validations

 Understand how to write to a different frame

 Know the processing of rollover buttons and moving images

6.2 DATA VALIDATION

Validation issimplytheprocessofensuringthatsomedatamight be correctdata

for a particular application. Form validation normally used to occur at the

server, after the client had entered all the necessary data and then pressed

the Submit button. If the data entered by a client was incorrect or was

simply missing, the server would have to send all the data back to the

client and request that the form be resubmitted with correct information.

This was really a lengthy process which used to put a lot of burden on the

server.

Dynamic HTML using

Java Script

137 Self-Instruction Manual

Notes

JavaScript provides a way to validate form's data on the client's computer

before sending it to the web server. Form validation generally performs

two functions.

 Basic Validation − The form must be checked to make sure

all the mandatory fields are filled in. It would require just a

loop through each field in the form and check for data.

 Data Format Validation − The data that is entered must be

checked for correct form and value. User code must include

appropriate logic to test correctness of data.

Example 6.1 – Basic Validation

<script type = "text/javascript">
<!--
 // Form validation code will come here.
 function validate() {

 if(document.myForm.Name.value == "") {
 alert("Please provide your name!");
 document.myForm.Name.focus() ;
 return false;
 }
 if(document.myForm.EMail.value == "") {
 alert("Please provide your Email!");
 document.myForm.EMail.focus() ;
 return false;
 }
 if(document.myForm.Zip.value == "" ||
isNaN(document.myForm.Zip.value) ||
 document.myForm.Zip.value.length != 5
) {

 alert("Please provide a zip in the
format #####.");
 document.myForm.Zip.focus() ;
 return false;
 }
 if(document.myForm.Country.value == "-1"
) {
 alert("Please provide your country!"
);
 return false;
 }
 return(true);
 }
 //-->
</script>

Dynamic HTML using

Java Script

138 Self-Instruction Manual

Notes

Example 6.2 – Data Format Validation

<script type = "text/javascript">
<!--
 function validateEmail() {
 var emailID =
document.myForm.EMail.value;
 atpos = emailID.indexOf("@");
 dotpos = emailID.lastIndexOf(".");

 if (atpos < 1 || (dotpos - atpos < 2))
{
 alert("Please enter correct email ID")
 document.myForm.EMail.focus() ;
 return false;
 }
 return(true);
 }
 //-->
</script>

Example 6.3 – Login Form Validation

<html>
<body>
<Form name="idcheck">
<table>
<tr>
<td>FirstName:</td>
<td><input type="text" name="fnm"></td>
</tr>
<tr>
<td>LastName:</td>
<td><input type="text" name="lnm"></td>
</tr>

<tr>
<td>E-mail:</td>
<td><input type="text" name="eid"></td>
</tr>
</table>

<input type="button" value="submit"
onClick="emailvalid()">

<input type="Reset" value="reset">
</Form>

<Script type="text/javascript">

function emailvalid()
{

Dynamic HTML using

Java Script

139 Self-Instruction Manual

Notes

 var first,last,id;
 first=idcheck.fnm.value;
 last=idcheck.lnm.value;
 id=idcheck.eid.value;
 var idreg=new RegExp(/^[a-zA-Z0-9._-]+@[a-zA-
Z0-9.-]+\.[a-zA-Z]{2,4}$/);
 var finalid=idreg.exec(id);
 if(first=="")
 {
 alert("Please Enter your FirstName");
 first.focus();
 }
 else if(last=="")
 {
 alert("Please Enter your Last Name");
 last.focus();
 }
 else if(!finalid)
 {
 alert("Invalid ID");
 id.focus();
 }
 else
 alert("Thank You");
}

</script>
</body>
</html>

Output

6.3 MESSAGES AND CONFIRMATIONS

JavaScript supports three important types of dialog boxes. These dialog

boxes can be used to raise and alert, or to get confirmation on any input or

to have a kind of input from the users. Here we will discuss each dialog

box one by one.

Dynamic HTML using

Java Script

140 Self-Instruction Manual

Notes

Alert Dialog Box

An alert dialog box is mostly used to give a warning message to the

users. For example, if one input field requires entering some text but the

user does not provide any input, then as a part of validation, you can use an

alert box to give a warning message.

Example 6.4

<html>
<head>
<script type = "text/javascript">
<!--
 function Warn() {
 alert ("This is a warning
message!");
 document.write ("This is a warning
message!");
 }
 //-->
</script>
</head>

<body>
<p>Click the following button to see the result:
</p>
<form>
<input type = "button" value = "Click Me" onclick
= "Warn();" />
</form>
</body>
</html>

Confirmation Dialog Box

A confirmation dialog box is mostly used to take user's consent on any

option. It displays a dialog box with two buttons: OK and Cancel.

If the user clicks on the OK button, the window method confirm() will

return true. If the user clicks on the Cancel button,

then confirm() returns false.

Example 6.5

<html>
<head>
<script type = "text/javascript">
<!--
 function getConfirmation() {
 var retVal = confirm("Do you want
to continue ?");

Dynamic HTML using

Java Script

141 Self-Instruction Manual

Notes

 if(retVal == true) {
 document.write ("User wants to
continue!");
 return true;
 } else {
 document.write ("User does not
want to continue!");
 return false;
 }
 }
 //-->
</script>
</head>

<body>
<p>Click the following button to see the result:
</p>
<form>
<input type = "button" value = "Click Me" onclick
= "getConfirmation();" />
</form>
</body>
</html>

Prompt Dialog Box

The prompt dialog box is very useful when you want to pop-up a text box

to get user input. Thus, it enables you to interact with the user. The user

needs to fill in the field and then click OK.

This dialog box is displayed using a method called prompt() which takes

two parameters:

(i) a label which you want to display in the text box and

(ii) a default string to display in the text box.

This dialog box has two buttons: OK and Cancel.

If the user clicks the OK button, the window method prompt() will return

the entered value from the text box. If the user clicks the Cancel button,

the window method prompt() returns null.

Example 6.6

<html>
<head>
<script type = "text/javascript">
<!--
 function getValue() {
 var retVal = prompt("Enter your
name : ", "your name here");

Dynamic HTML using

Java Script

142 Self-Instruction Manual

Notes

 document.write("You have entered :
" + retVal);
 }
 //-->
</script>
</head>

<body>
<p>Click the following button to see the result:
</p>
<form>
<input type = "button" value = "Click Me" onclick
= "getValue();" />
</form>
</body>
</html>

6.4 WRITING TO A DIFFERENT FRAME

We can also use the document.write() method to send dynamically

created content to another frame in a frameset or to another browser

window previously opened by a script in the same page. It can be done

with the help ofparent.<<framename>>.document.write()method.

All you need for this kind of content creation is a valid reference to the

other frame or window.

A typical frameset document defines the physical layout of how the main

browser window is to be subdivided into separate panels. Framesets can, of

course, be nested many levels deep, where one frame loads a document

that is, itself, a frameset document. The key to writing a valid reference to

a distant frame knows the relationship between the frame that contains the

script doing the writing and the target frame.

Example 6.7

parent.html

<HTML>
<HEAD><TITLE>Frames Example</TITLE></HEAD>
<!-- divide into two columns -->
<FRAMESET COLS="50%,*">
<FRAME SRC="frame1.html" NAME="frame1">
<FRAME SRC="frame2.html">
</FRAMESET>
<BODY>
</BODY>
</HTML>

Dynamic HTML using

Java Script

143 Self-Instruction Manual

Notes

frame1.html

<HTML>
<HEAD><TITLE>Frames Example</TITLE>
</HEAD>
<BODY>
</BODY>
</HTML>

frame2.html

<HTML>
<HEAD>
<TITLE>Frames Example</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="JavaScript">
<!-- hide from old browsers
//
function doit()
{
parent.frame1.document.write("Hello
");
}
//
// end script hiding -->
</SCRIPT>
Frame 2 Content

Hello

<table border=1 cellpadding=3 bgcolor="#5cacee">
<!-- Buttons -->
<tr bgcolor="#5cacee">
<form NAME="roundit">
<td>
<p align="center">Shall I Print Hello in Frame
1..? </p>

</td>
<td>
<p align="center">
<input TYPE="button" VALUE=" YES "
Onclick="doit()"></p>
</td>
</form>
</tr>
</table>
</BODY>
</HTML>

Dynamic HTML using

Java Script

144 Self-Instruction Manual

Notes

Output

6.5 ROLLOVER BUTTONS

On many web pages, JavaScript rollovers are handled by adding an

onmouseover() and onmouseout() event on images.

 onmouseover() is triggered when the mouse moves over an

element

 onmouseout() is triggered when the mouse moves away from

the element

Example 6.8

<html>
<head>
<script type="text/javascript">

function bigImg(x)
{
x.style.height="400px";
x.style.width="450px";
}

function normalImg(x)
{
x.style.height="200px";
x.style.width="250px";
}

function MouseRollover(MyImage)
{
 MyImage.src = "sf511-s03in_3.jpg";
}

function MouseOut(MyImage)
{
 MyImage.src = "Win-Seven.jpg";
}

Dynamic HTML using

Java Script

145 Self-Instruction Manual

Notes

</script>
</head>

<body>

<table border="3">

<tr>
<td>
<img border="1" src="sf511-s03in_3.jpg"
width="200px" height="200px"
onmouseover="bigImg(this)"
onmouseout="normalImg(this)"></td>

<td><img border="1" src="Win-Seven.jpg"
width="200px" height="200px"
onmouseover="bigImg(this)"
onmouseout="normalImg(this)"></td>

<td><img src="Win-Seven.jpg" boarder="0px"
width="200px" height="200px"
onMouseOver="MouseRollover(this)"
onMouseOut="MouseOut(this)" /></td>

</body>
</html>

Output

Dynamic HTML using

Java Script

146 Self-Instruction Manual

Notes

6.6 MOVING IMAGES

JavaScript can be used to move a number of DOM elements (,
<div> or any other HTML element) around the page according to some

sort of pattern determined by a logical equation or function.

JavaScript provides the following two functions to be frequently used in

animation programs.

 setTimeout(function, duration)

This function calls function after duration milliseconds from

now.

 setInterval(function,duration)

Thisfunction calls function after every duration milliseconds.

 clearTimeout(setTimeout_variable)

This function calls clears any timer set by the setTimeout()

functions.

Example 6.9 – Manual Animation

<html><head>
<title>JavaScript Animation</title>
<script type = "text/javascript">
<!--
var imgObj = null;
function init()
{
imgObj = document.getElementById('myImage');
imgObj.style.position= 'relative';
imgObj.style.left = '0px';
}
function moveRight()
{
imgObj.style.left = parseInt(imgObj.style.left) +
10 + 'px';
}
window.onload = init;
//-->
</script>
</head>
<body>
<form>

<p>Click button below to move the image to
right</p>
<input type = "button" value = "Click Me" onclick
= "moveRight();" />
</form>
</body>
</html>

Dynamic HTML using

Java Script

147 Self-Instruction Manual

Notes

Output

 We are using the JavaScript function getElementById() to get a

DOM object and then assigning it to a global variable imgObj.

 Wehave defined an initialization function init() to

initialize imgObj

 We have set its position and left attributes.

 We are calling initialization function at the time of window load.

 Finally, we are calling moveRight() function to increase the left

distance by 10 pixels. You could also set it to a negative value to

move it to the left side

Example 6.9 – Manual Animation

<html>
<head>
<title>JavaScript Animation</title>
<script type = "text/javascript">
<!--
 var imgObj = null;
 var animate ;

 function init() {
 imgObj =
document.getElementById('myImage');
 imgObj.style.position= 'relative';
 imgObj.style.left = '0px';
 }
 function moveRight() {
 imgObj.style.left =
parseInt(imgObj.style.left) + 10 + 'px';
 animate = setTimeout(moveRight,20);
// call moveRight in 20msec
 }
 function stop() {

Dynamic HTML using

Java Script

148 Self-Instruction Manual

Notes

 clearTimeout(animate);
 imgObj.style.left = '0px';
 }
 window.onload = init;
 //-->
</script>
</head>

<body>
<form>

<p>Click the buttons below to handle animation</p>
<input type = "button" value = "Start" onclick =
"moveRight();" />
<input type = "button" value = "Stop" onclick =
"stop();" />
</form>
</body>
</html>

Output

 The moveRight() function is calling setTimeout() function to

set the position of imgObj.

 We have added a new function stop() to clear the timer set

by setTimeout() function and to set the object at its initial

position.

Check Your Progress

1. What do you mean by validation?

2. Name the three types of dialog boxes supported by JavaScript.

3. How will you write to a different frame?

Dynamic HTML using

Java Script

149 Self-Instruction Manual

Notes

6.7 ANSWERS TO CHECK YOUR PROGRESS

1. Validation issimplytheprocessofensuringthatsomedatamight be

correctdata for a particular application

2. Three types of dialog boxes in JavaScript are Alert, Confirmation

and Prompt

3. Writing into a different frame can be done with the help

ofparent.<<framename>>.document.write()method

6.8LET US SUM UP

Validation issimplytheprocessofensuringthatsomedatamight be

correctdata for a particular application.

Basic Validation − The form must be checked to make sure all the

mandatory fields are filled in. It would require just a loop through

each field in the form and check for data.

Data Format Validation − The data that is entered must be checked

for correct form and value. User code must include appropriate logic

to test correctness of data

Three types of dialog boxes in JavaScript are Alert, Confirmation

and Prompt

An alert dialog box is mostly used to give a warning message to

the users.

A confirmation dialog box is mostly used to take user's consent

on any option.

The prompt dialog box is very useful when you want to pop-up a

text box to get user input.

Writing into a different frame can be done with the help

ofparent.<<framename>>.document.write()method

On many web pages, JavaScript rollovers are handled by adding an

onmouseover() and onmouseout() event on images

JavaScript provides the following two functions to be frequently

used in animation programs.

 setTimeout(function, duration)

This function calls function after duration milliseconds

from now.

 setInterval(function,duration)

Dynamic HTML using

Java Script

150 Self-Instruction Manual

Notes

Thisfunction calls function after

every duration milliseconds.

 clearTimeout(setTimeout_variable)

This function calls clears any timer set by the

setTimeout() functions.

6.9 SELF-ASSESSMENT EXERCISES

Short Questions

1. State the importance of data validations in web forms.

2. What is the syntax of confirmation dialog box?

3. How to perform rollovers in JavaScript?

4. List the functions used to perform animations in JavaScript

Detail Questions

1. How will you perform data validations in JavaScript? Explain with

examples.

2. With suitable examples explain about creating dialog boxes.

3. Explain how to write to a different frame.

4. Write a program to create rollover buttons.

5. With suitable example explain how to perform moving of images.

6.10SUGGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. www.w3schools.com

6. JavaScript: The Definitive Guide, 6th Edition, David Flanagan,

O‘Reilly Media, 2011.

7. Eloquent JavaScript, 3rd edition, Marijn Haverbeke, 2018

Dynamic HTML using

Java Script

151 Self-Instruction Manual

Notes

BLOCK – III

HOST OBJECTS

UNIT -7 DOCUMENT OBJECT

MODEL

Structure

7.0 Introduction

7.1 Objectives

7.2 Document Object Model

7.3 Browsers and DOM

7.4 DOM history and levels

7.5 Document elements

7.6 Intrinsic Event Handling

7.7 Answers to Check Your Progress

7.8 Let us Sum up

7.9 Self-Assessment Exercises

7.10 Suggested Readings

7.0 INTRODUCTION

It is explained that every web browser window, tab, and frame is

representedby a Window object. Every Window object has a document

property that refersto a Document object. The Document object represents

the content of the window,and it is the subject of this unit.

7.1 OBJECTIVES

After going through this unit, you will be able to:

 Query or select individual elements from a document.

 Traverse a document as a tree of nodes, and how to find the

ancestors,siblings, and descendants of any document element.

 Modify the structure of a document by creating, inserting, and

deletingnodes.

7.2 DOCUMENT OBJECT MODEL

The Document Object Model, or DOM, is the fundamental API for

representing andmanipulating the content of HTML and XML documents.

The API is not particularlycomplicated, but there are a number of

architectural details you need to understand.First, you should understand

Document Object Model

152 Self-Instruction Manual

Notes

that the nested elements of an HTML or XML documentare represented in

the DOM as a tree of objects.

The tree representation of an HTMLdocument contains nodes representing

HTML tags or elements, such as <body> and<p>, and nodes representing

strings of text. An HTML document may also containnodes representing

HTML comments.

Let us consider the following simple HTMLdocument:

<html>
<head>
<title>Sample Document</title>
</head>
<body>
<h1>An HTML Document</h1>
<p>This is a <i>simple</i> document.
</html>

The DOM representation of this document is the tree pictured in the

following figure.

Figure 7.1. The tree representation of an HTML document

The node directlyabove a node is the parent of that node. The nodes that

are one level directly below anothernode are the children of that node.

Nodes at the same level, and with the same parent,are siblings. The set of

nodes any number of levels below another node are the descendantsof that

node. And the parent, grandparent, and all other nodes above a node arethe

ancestors of that node.

7.3 BROWSERS AND DOM

There are several DOMs in existence. The following sections explain each

of these DOMs in detail and describe how you can use them to access and

modify document content.

Document Object Model

153 Self-Instruction Manual

Notes

 The Legacy DOM − This is the model which was introduced

in early versions of JavaScript language. It is well supported

by all browsers, but allows access only to certain key portions

of documents, such as forms, form elements, and images.

 The W3C DOM − This document object model allows access

and modification of all document content and is standardized

by the World Wide Web Consortium (W3C). This model is

supported by almost all the modern browsers.

 The IE4 DOM − This document object model was introduced

in Version 4 of Microsoft's Internet Explorer browser. IE 5

and later versions include support for most basic W3C DOM

features.

Major vendors realize the importance of DOM and have begun to make

their Web browsersDOM compliant. NN 7 and IE 6 already have good

DOM support. In particular NN ledthe way in supporting DOM Level 1

and Level 2. Most examples in this chapter will workunder both NN 6, IE

6 and later versions.

To detect the extent of DOM support that a user agent (browser) provides,

the followingtype of Javascript code can be used:

var imp = document.implementation;
if (typeof imp != "undefined" &&
imp.hasFeature("HTML", "1.0") &&
imp.hasFeature("Events", "2.0") &&
imp.hasFeature("CSS", "2.0")
)
{
. . .
}

A browser is DOM compliant if it supports the interfaces specified by

DOM. But it canalso add interfaces not specified or add fields and methods

to the required interfaces. Forexample NN and IE both add innerHTML to

the HTMLElement interface. It is easy to test if a field or method is

available in a browser. For example,

if (document.getElementById)
. . .

tests if the getElementById method is available in the document object.

DOM compatibility

If you want to write a script with the flexibility to use either W3C DOM

or IE 4 DOM depending on their availability, then you can use a

capability-testing approach that first checks for the existence of a method

or property to determine whether the browser has the capability you

desire. For example,

Document Object Model

154 Self-Instruction Manual

Notes

if (document.getElementById)
{
 // If the W3C method exists, use it
} else if (document.all)
{
 // If the all[] array exists, use it
} else
{
 // Otherwise use the legacy DOM
}

7.4 DOM HIERARCHY AND LEVELS

In DOM,the Objects are organized in a hierarchy. This hierarchical

structure applies to the organization of objects in a Web document.

 Window object − Top of the hierarchy. It is the outmost element

of the object hierarchy.

 Document object − Each HTML document that gets loaded into a

window becomes a document object. The document contains the

contents of the page.

 Form object − Everything enclosed in the <form>...</form>

tags sets the form object.

 Form control elements − The form object contains all the

elements defined for that object such as text fields, buttons,

radio buttons, and checkboxes.

Example 7.1

<!doctype html>
<html>
<head>
<title>My home page</title>
</head>
<body>

<h1>My home page</h1>
<p>Hello, I am Marijn and this is my home
page.</p>
<p>I also wrote a book! Read it
here.</p>
</body>
</html>

Document Object Model

155 Self-Instruction Manual

Notes

DOM Hierarchy of Example 7.1

Tree Structure of Example 7.1

Relationships among the elements inExample 7.1

Document Object Model

156 Self-Instruction Manual

Notes

The Document object, its Element objects, and the Text objects that

representruns oftext in the document are all Node objects. Node defines the

following importantproperties:

parentNode - The Node that is the parent of this one, or null for

nodes like the Document objectthat have no parent.

childNodes - A read-only array-like object (a NodeList) that is

a live representation of a Node‘schild nodes.

firstChild, lastChild - The first and last child nodes of a

node, or null if the node has no children.

nextSibling, previousSibling - The next and previous

sibling node of a node. Two nodes with the same parent are

siblings. Their order reflects the order in which they appear in the

document. Theseproperties connect nodes in a doubly linked list.

nodeType - The kind of node this is. Document nodes have the

value 9. Element nodes havethe value 1. Text nodes have the value

3. Comments nodes are 8 and Document-Fragment nodes are 11.

nodeValue - The textual content of a Text or Comment node.

nodeName - The tag name of an Element, converted to

uppercase.

Using these Node properties, the second child node of the first child of the

Documentcan be referred to with expressions like these:

document.childNodes[0].childNodes[1]
document.firstChild.firstChild.nextSibling

Suppose the document in question is the following:

<html><head><title>Test</title></head><body>Hello
World!</body></html>

Then the second child of the first child is the <body> element. It has a

nodeType of 1 anda nodeName of ―BODY‖.

<script>
function replaceImages()
{
let images =
document.body.getElementsByTagName("img");
for (let i = images.length - 1; i >= 0; i--)
{
let image = images[i];
if (image.alt)
{
let text = document.createTextNode(image.alt);

Document Object Model

157 Self-Instruction Manual

Notes

image.parentNode.replaceChild(text, image);
}
}
}
</script>

7.5 DOCUMENT ELEMENTS

Most of the client-side JavaScript programs work by manipulating one or

moredocument elements. When these programs start, they can use the

global variabledocument to refer to the Document object. In order to

manipulate elements of the document, however, they must obtain or select

the Element objects that refer tothose document elements. The DOM

defines a number of ways to select elements; youcan query a document

for an element or elements:

 with a specified idattribute;

 with a specified nameattribute;

 with the specified tag name;

 with the specified CSS class or classes; or

 matching the specified CSS selector

In the following section we will explore all the types of selecting the

element.

Selecting Elements By ID

Any HTML element can have an id attribute. The value of this attribute

must be uniquewithin the document—no two elements in the same

document can have the same ID.You can select an element based on this

unique ID with the getElementById() methodof the Document object.

var sec1 = document.getElementById("section1");

Selecting Elements by Name

The HTML name attribute was originally intended to assign names to

form elements,and the value of this attribute is used when form data is

submitted to a server. Like theid attribute, name assigns a name to an

element. Unlike id, however, the value of aname attribute does not have to

be unique: multiple elements may have the same name,and this is

common in the case of radio buttons and checkboxes in forms. Also,

unlikeid, the name attribute is only valid on a handful of HTML elements,

including forms,form elements, <iframe>, and elements.

To select HTML elements based on the value of their name attributes, you

can use thegetElementsByName() method of the Document object:

Document Object Model

158 Self-Instruction Manual

Notes

var radiobuttons =
document.getElementsByName("favorite_color");

Selecting Elements by Type

You can select all HTML or XML elements of a specified type (or tag

name) using thegetElementsByTagName()method of the Document

object. To obtain a read-only arraylikeobject containing the Element

objects for all elements in a document, forexample, you might

write:

var spans = document.getElementsByTagName("span");

Like getElementsByName(), getElementsByTagName()returns a

NodeList object.

Selecting Elements by CSS Class

HTML5 defines a method,getElementsByClassName(), that allows us

to select sets of document elements based onthe identifiers in their class

attribute.

// Find all elements that have "warning"
// in their class attribute
var warnings =
document.getElementsByClassName("warning");

Like getElementsByTagName(), getElementsByClassName() can

be invoked on bothHTML documents and HTML elements, and it returns a

live NodeList containing allmatching descendants of the document or

element. getElementsByClassName() takes asingle string argument,

but the string may specify multiple space-separated identifiers.

Selecting Elements with CSS Selectors

CSS stylesheets have a very powerful syntax, known as selectors, for

describing elementsor sets of elements within a document. Elements can be

described by ID, tag name, or class:

#nav
// An element with id="nav"
div
// Any <div> element
.warning
// Any element with "warning" in its class
// attribute

More generally, elements can be selected based on attribute values:

Document Object Model

159 Self-Instruction Manual

Notes

p[lang="fr"]
// A paragraph written in French: <p lang="fr">

*[name="x"]
// Any element with a name="x" attribute

These basic selectors can be combined:

span.fatal.error
// Any with "warning" and "fatal"
// in its class

span[lang="fr"].warning
// Any warning in French

Selectors can also specify document structure:

#log span
// Any descendant of the element
// with id="log"

#log>span
// Any child of the element with id="log"

<body>h1:first-child
// The first <h1> child of the <body>

Selectors can be combined to select multiple elements or multiple sets of

elements:

div, #log
// All <div> elements plus the element
// with id="log"

As you can see, CSS selectors allow elements to be selected in all of the

ways describedabove: by ID, by name, by tag name, and by class name.

7.6 INTRINSIC EVENT HANDLING

Intrinsic event handlers are ways to attach specific scripts to your

documents that are executed only when something happens to an element.

Not all event handlers apply to all elements.

Example 7.2

<html>
<body>
<p>
When you enter the input field, a function is
triggered which sets the background color to

Document Object Model

160 Self-Instruction Manual

Notes

yellow. When you leave the input field, a function
is triggered which removes the background color.
</p>

<form id="myForm">
<input type="text" id="myInput">
</form>

<script>

var x = document.getElementById("myForm");
x.addEventListener("focus", myFocusFunction,
true);
x.addEventListener("blur", myBlurFunction, true);

function myFocusFunction()
{
document.getElementById("myInput").style.backgroun
dColor = "yellow";
}

function myBlurFunction()
{
document.getElementById("myInput").style.backgroun
dColor = "";
}

</script>

</body>
</html>

Output

Document Object Model

161 Self-Instruction Manual

Notes

Example 7.3

<html><body>
<h1 onclick="this.innerHTML='Ooops!'">
Click on this text!</h1>
</body></html>

Output

Example 7.4

<html>
<body>
<p>
When you enter the input field, a function is
triggered which sets the background color to
yellow. When you leave the input field, a function
is triggered which removes the background color.
</p>

<form id="myForm">
<input type="text" id="myInput">
</form>

<script>

var x = document.getElementById("myForm");
x.addEventListener("focus", myFocusFunction,
true);

Document Object Model

162 Self-Instruction Manual

Notes

x.addEventListener("blur", myBlurFunction, true);

function myFocusFunction()
{
document.getElementById("myInput").style.backgroun
dColor = "yellow";
}

function myBlurFunction()
{
document.getElementById("myInput").style.backgroun
dColor = "";
}

</script>

</body>
</html>

7.7 ANSWERS TO CHECK YOUR PROGRESS

1. The Document Object Model, or DOM, is the fundamental API

for representing andmanipulating the content of HTML and XML

documents.

2. In DOM,the Objects are organized in a hierarchy

 Window object.

 Document object.

 Form object.

 Form control elements.

3. The DOM defines a number of ways to select elements

 with a specified id attribute;

 with a specified name attribute;

 with the specified tag name;

 with the specified CSS class or classes; or

 matching the specified CSS selector

Check Your Progress

1. What is DOM?

2. What are the levels in DOM hierarchy?

3. List the ways to select the DOM elements.

Document Object Model

163 Self-Instruction Manual

Notes

7.8 LET US SUM UP

The Document Object Model, or DOM, is the fundamental API for

representing andmanipulating the content of HTML and XML

documents.

DOMs can be Legacy DOM, W3C DOM or IE4 DOM

In DOM,the Objects are organized in a hierarchy

 Window object − Top of the hierarchy. It is the outmost

element of the object hierarchy.

 Document object − Each HTML document that gets loaded

into a window becomes a document object. The document

contains the contents of the page.

 Form object − Everything enclosed in the

<form>...</form> tags sets the form object.

 Form control elements − The form object contains all the

elements defined for that object such as text fields, buttons,

radio buttons, and checkboxes.

The DOM defines a number of ways to select elements:

 with a specified id attribute;

 with a specified name attribute;

 with the specified tag name;

 with the specified CSS class or classes; or

 matching the specified CSS selector

Intrinsic event handlers are ways to attach specific scripts to your

documents that are executed only when something happens to an

element.

7.9 SELF-ASSESSMENT EXERCISES

Short Questions

1. What is the purpose of DOM?

2. Draw the tree structure of a HTML document.

3. List the properties of Node object.

4. How will you select elements in DOM?

Detail Questions

1. Discuss in details about DOM hierarchy.

2. With suitable examples explain properties of Node object.

3. Describe the ways to select the elements of DOM.

4. Write a program to implement the concept of intrinsic even handling.

Document Object Model

164 Self-Instruction Manual

Notes

7.10SUGGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. www.w3schools.com

6. JavaScript: The Definitive Guide, 6th Edition, David Flanagan,

O‘Reilly Media, 2011.

7. Eloquent JavaScript, 3rd edition, Marijn Haverbeke, 2018

Document Object Model

165 Self-Instruction Manual

Notes

UNIT- 8 REPRESENTING WEB DATA

Structure

8.0 Introduction

8.1 Objectives

8.2 XML Basics

8.3 XML and HTML

8.4 Documents and Vocabularies

8.5 Versions and declarations

8.6 Namespaces

8.7 Answers to Check Your Progress

8.8 Let us Sum up

8.9 Self-Assessment Exercises

8.10 Suggested Readings

8.0 INTRODUCTION

XML stands for eXtensible Markup Language and is a text-based markup

language derived from Standard Generalized Markup Language (SGML).

This unit will provide you the basics of XML. The web data are usually

represented using XML.

8.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the basics of XML

 Represent web data using XML

 Learn about Namespaces.

8.2XML BASICS

XML stands for eXtensible Markup Language, developed by W3C in

1996. XML 1.0 was officially adopted as a W3C recommendation in 1998.

XML was designed to carry data, not to display data. XML is designed to

be self-descriptive. XML is a subset of SGML that can define your own

tags. A Meta Language and tags describe the content. XML Supports CSS,

XSL, DOM.

.

XML tags identify the data and are used to store and organize the data,

rather than specifying how to display it like HTML tags, which are used to

display the data. XML is not going to replace HTML in the near future, but

it introduces new possibilities by adopting many successful features of

HTML.

Representing Web Data

166 Self-Instruction Manual

Notes

There are three important characteristics of XML that make it useful in a

variety of systems and solutions −

 XML is extensible − XML allows you to create your own

self-descriptive tags, or language, that suits your application.

 XML carries the data, does not present it − XML allows

you to store the data irrespective of how it will be presented.

 XML is a public standard − XML was developed by an

organization called the World Wide Web Consortium (W3C)

and is available as an open standard.

A short list of XML usageis given below

 XML can work behind the scene to simplify the creation of

HTML documents for large web sites.

 XML can be used to exchange the information between

organizations and systems.

 XML can be used for offloading and reloading of databases.

 XML can be used to store and arrange the data, which can

customize your data handling needs.

 XML can easily be merged with style sheets to create almost

any desired output.

 Virtually, any type of data can be expressed as an XML

document.

XML is a markup language that defines set of rules for encoding

documents in a format that is both human-readable and machine-readable.

Markup is information added to a document that enhances its meaning in

certain ways, in that it identifies the parts and how they relate to each

other. More specifically, a markup language is a set of symbols that can be

placed in the text of a document to demarcate and label the parts of that

document.

Following example shows how XML markup looks, when embedded in a

piece of text

<message>
<text>
 Hello, world!
 </text>
</message>

This snippet includes the markup symbols, or the tags such as

<message>...</message> and <text>... </text>. The tags

<message> and </message> mark the start and the end of the XML code

fragment. The tags <text> and </text> surround the text Hello,
world!.

Representing Web Data

167 Self-Instruction Manual

Notes

A programming language consists of grammar rules and its own

vocabulary which is used to create computer programs. These programs

instruct the computer to perform specific tasks. XML does not qualify to

be a programming language as it does not perform any computation or

algorithms. It is usually stored in a simple text file and is processed by

special software that is capable of interpreting XML.

Example 8.1

<?xml version = "1.0"?>
<contact-info>
<name>Pragati</name>
<company>Hummingbird</company>
<phone>(011) 123-4567</phone>
</contact-info>

There are two kinds of information in the above example

 Markup, like <contact-info>

 The text, or the character data, such as Pragati,

Hummingbird and (011) 123-4567.

8.3XML AND HTML

HTML is about displaying information, whereas XML is about carrying

information. In other words, XML was created to structure, store, and

transport information. HTML was designed to display the data.

 Using XML, we can create own tags where as in HTML it is not

possible instead it offers several built in tags.

 XML is platform independent neutral and language independent.

 XML tags and attribute names are case sensitive where as in

HTML it is not.

 XML attribute values must be single or double quoted where as in

HTML it is not compulsory

 XML elements must be properly nested

 All XML elements must have a closing tag

 XML is used to create new internet languages. Here are some

examples:

- WSDL for describing available web services

- WAP and WML as markup languages for handheld devices

- RSS languages for news feeds

- RDF and OWL for describing resources and ontology

- SMIL for describing multimedia for the web

.

Representing Web Data

168 Self-Instruction Manual

Notes

8.4DOCUMENTS AND VOCABULARIES

An XML document is a basic unit of XML information composed of

elements and other markup in an orderly package. An XML document can

contains wide variety of data. For example, database of numbers, numbers

representing molecular structure or a mathematical equation.

An XML document consists of two parts namely

 Document Prolog

 Document Elements

Document Prolog Section

Document Prolog comes at the top of the document, before the root

element. This section contains

 XML declaration

 Document type declaration

Document Elements Section

Document Elements are the building blocks of XML. These divide the

document into a hierarchy of sections, each serving a specific purpose.

You can separate a document into multiple sections so that they can be

rendered differently, or used by a search engine. The elements can be

containers, with a combination of text and other elements.

For the Example 8.1

<?xml version = "1.0"?>
<contact-info>
<name>Pragati</name>
<company>Hummingbird</company>
<phone>(011) 123-4567</phone>
</contact-info>

8.5VERSIONS AND DECLERATIONS

The XML document can optionally have an XML declaration. It is written

as follows.

<?xml version = "1.0" encoding = "UTF-8"?>

Where version is the XML version and encoding specifies the character

encoding used in the document.

Document Prolog

Document Elements

Representing Web Data

169 Self-Instruction Manual

Notes

Syntax Rules for XML Declaration

 The XML declaration is case sensitive and must begin with

"<?xml>" where "xml" is written in lower-case.

 If document contains XML declaration, then it strictly needs to be

the first statement of the XML document.

 The XML declaration strictly needs be the first statement in the

XML document.

 An HTTP protocol can override the value of encoding that is given

in the XML declaration.

Tags and Elements

An XML file is structured by several XMLelements also called

XMLnodes or XMLtags. The names of XMLelements are enclosed in

triangular brackets <> as shown below.

<element>

Syntax Rules for Tags and Elements

Each XMLelement needs to be closed either with start or with end

elements as shown below.

<element>....</element>

or in simple-cases,

<element/>

Nesting of Elements

An XML element can contain multiple XML elements as its children, but

the children elements must not overlap. i.e., an end tag of an element must

have the same name as that of the most recent unmatched start tag.

Example 8.2 – Incorrect Nesting of Elements

<?xml version = "1.0"?>
<contact-info>
<company>Hummingbird
<contact-info>
</company>

Example 8.3 – Correct Nesting of Elements

<?xml version = "1.0"?>
<contact-info>
<company>Hummingbird</company>
<contact-info>

Representing Web Data

170 Self-Instruction Manual

Notes

Root Element

An XML document can have only one root element. For example,

following is not a correct XML document, because both

the x and y elements occur at the top level without a root element

<x>...</x>
<y>...</y>

The Following example shows a correctly formed XML document

<root>
<x>...</x>
<y>...</y>
</root>

The names of XMLelements are case-sensitive. That means the name of

the start and the end elements need to be exactly in the same case.

For example, <contact-info> is different from <Contact-Info>

XML Attributes

An attribute specifies a single property for the element, using a

name/value pair. An XMLelement can have one or more attributes.

Demo..!

Here href is the attribute name and http://www.demo.com/is

attribute value.

Syntax Rules for XML Attributes

 Attribute names in XML (unlike HTML) are case sensitive.

That is, HREF and href are considered two different XML

attributes.

 Same attribute cannot have two values. The following

example shows incorrect syntax because the attribute b is

specified twice

....

 Attribute names are defined without quotation marks,

whereasattribute values must always appear in quotation marks.

 Following example demonstrates incorrect xml syntax

....

In the above example, the attribute value is not defined in quotation

marks.

Representing Web Data

http://www.demo.com/

171 Self-Instruction Manual

Notes

XML References

References usually allow you to add or include additional text or markup

in an XML document. References always begin with the

symbol "&" which is a reserved character and end with the

symbol ";". XML has two types of references −

 Entity References − An entity reference contains a name

between the start and the end delimiters. For

example & where amp is name. The name refers to a

predefined string of text and/or markup.

 Character References − These contain references, such

as A, contains a hash mark (―#‖) followed by a number.

The number always refers to the Unicode code of a character.

In this case, 65 refers to alphabet "A".

XML Text

The names of XMLelements and XMLattributes are case-sensitive, which

means the name of start and end elements need to be written in the same

case. To avoid character encoding problems, all XML files should be

saved as Unicode UTF-8 or UTF-16 files.

Whitespace characters like blanks, tabs and line-breaks between XML-

elements and between the XML-attributes will be ignored.

Some characters are reserved by the XML syntax itself. Hence, they

cannot be used directly. To use them, some replacement-entities are used,

which are listed below.

Not Allowed

Character

Replacement

Entity

Character

Description

< < less than

> > greater than

& & ampersand

' ' apostrophe

" " quotation mark

8.6NAMESPACES

A Namespace is a set of unique names. Namespace is a mechanism by

which element and attribute name can be assigned to a group. The

Namespace is identified by URI(Uniform Resource Identifiers).

A Namespace is declared using reserved attributes. Such an attribute

name must either be xmlns or begin with xmlns: shown as below.

<element xmlns:name = "URL">

Representing Web Data

172 Self-Instruction Manual

Notes

Syntax

 The Namespace starts with the keyword xmlns.

 The word name is the Namespace prefix.

 The URL is the Namespace identifier.

Namespace affects only a limited area in the document. An element

containing the declaration and all of its descendants are in the scope of the

Namespace.

Example 8.4

<?xml version = "1.0" encoding = "UTF-8"?>
<cont:contact xmlns:cont =
"www.hbacademy.com/profile">
<cont:name>Pragati</cont:name>
<cont:company>Hummingbird</cont:company>
<cont:phone>(011) 123-4567</cont:phone>
</cont:contact>

Here, the Namespace prefix is cont, and the Namespace identifier (URI)

as www.hbacademy.com/profile. This means, the element names and

attribute names with the cont prefix (including the contact element), all

belong to the www.hbacademy.com/profile namespace.

Example 8.5

<?xml version = "1.0"?>
<?xml-stylesheet type = "text/xsl" href =
"students.xsl"?>
<class>
<student rollno = "393">
<firstname>Dinkar</firstname>
<lastname>Kad</lastname>
<nickname>Dinkar</nickname>
<marks>85</marks>
</student>

<student rollno = "493">
<firstname>Vaneet</firstname>
<lastname>Gupta</lastname>
<nickname>Vinni</nickname>
<marks>95</marks>
</student>

<student rollno = "593">
<firstname>Jasvir</firstname>
<lastname>Singh</lastname>

Representing Web Data

173 Self-Instruction Manual

Notes

<nickname>Jazz</nickname>
<marks>90</marks>
</student>

</class>

8.7 ANSWERS TO CHECK YOUR PROGRESS

1. XML stands for eXtensible Markup Language, developed by

W3C in 1996.

2. An XML document is a basic unit of XML information composed

of elements and other markup in an orderly package. An

XML document can contains wide variety of data

3. A Namespace is a set of unique names. Namespace is a

mechanism by which element and attribute name can be assigned

to a group

8.8 LET US SUM UP

XML stands for eXtensible Markup Language, developed by W3C

in 1996.

XML tags identify the data and are used to store and organize the

data, rather than specifying how to display it like HTML tags, which

are used to display the data.

There are three important characteristics of XML that make it useful

in a variety of systems and solutions

 XML is extensible.

 XML carries the data, does not present it

 XML is a public standard

A short list of XML usage is given below

 XML can work behind the scene to simplify the creation of

HTML documents for large web sites.

 XML can be used to exchange the information between

organizations and systems.

Check Your Progress

1. What is XML?

2. What is an XML document?

3. What is a namespace?

Representing Web Data

174 Self-Instruction Manual

Notes

 XML can be used for offloading and reloading of databases.

 XML can be used to store and arrange the data, which can

customize your data handling needs.

 XML can easily be merged with style sheets to create almost

any desired output.

 Virtually, any type of data can be expressed as an XML

document

An XML document is a basic unit of XML information composed of

elements and other markup in an orderly package. An

XML document can contains wide variety of data.

An XML document consists of two parts namely

 Document Prolog

 Document Elements

An XML file is structured by several XMLelements also called

XMLnodes or XMLtags.

An XML document can have only one root element.

An attribute specifies a single property for the element, using a

name/value pair. An XMLelement can have one or more attributes.

References usually allow you to add or include additional text or

markup in an XML document. References always begin with the

symbol "&" which is a reserved character and end with the

symbol ";".

XML has two types of references

 Entity References

 Character References

A Namespace is a set of unique names. Namespace is a mechanism

by which element and attribute name can be assigned to a group. The

Namespace is identified by URI(Uniform Resource Identifiers).

8.9 SELF-ASSESSMENT EXERCISES

Short Questions

1. What is XML?

2. What are the characteristics of XML.

3. List the uses of XML.

4. What are the two types of XML references?

Detail Questions

1. What is the difference between XML and HTML? Explain.

2. Discuss about XML tags and attributes.

3. How to define version for an XML document? Give examples.

4. Write a XML program to represent book details as web data.

5. Write a note on namespaces.

Representing Web Data

175 Self-Instruction Manual

Notes

8.10SUGGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. www.w3schools.com

Representing Web Data

176 Self-Instruction Manual

Notes

UNIT- 9 JAVASCRIPT AND XML

Structure

9.0 Introduction

9.1 Objectives

9.2 Reading XML data

9.3 Ajax

9.4 DOM based XML processing

9.5 SAX

9.6 XSL, XSLT, XPATH

9.7 Answers to Check Your Progress

9.8 Let us Sum up

9.9 Self-Assessment Exercises

9.10 Suggested Readings

9.0 INTRODUCTION

XML is more suitable for some kind of data interchange but, and even if

the web is based in SGML/XML standards. Despite the fact that XML is

parsed by browser for a long time, the amount of tools to process XML

with JavaScript is quite limited. This might be a result of the arrival of

JSON and the small number of users actually needing real mixed content.

This unit will discuss about the approaches for parsing XML documents

9.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand how to read XML data

 Perform DOM based XML processing

 Learn about Ajax, SAX

 Know the basics of XSL, XSLT, XPATH.

9.2READING XML DATA

Several key methods and properties in JavaScript can help in getting

information from an XML file. In the section, a very simple XML file is

used to demonstrate pulling data from XML into an HTML page using

JavaScript to parse (interpret) the XML file.

All major browsers have a built-in XML parser to access and manipulate

XML.

Java Script and XML

177 Self-Instruction Manual

Notes

Example 9.1

The XML file contains a typical arrangement of data using a level of

categories that you might find in a bookstore or library arrangement.

writers.xml

<?xml version="1.0" ?>
<writers>
<EnglishLanguage>
<fiction>
<pen>
<name>Jane Austin</name>
<name>Rex Stout</name>
<name>Dashiell Hammett</name>
</pen>
</fiction>
</EnglishLanguage>
</writers>

readXML.css

body {
 font-family:verdana;
 color:#ff4d00;
 font-size:14pt;
 font-weight:bold;
 background-color:#678395;
}
div {background-color:#c1d4cc;}
#blueBack {background-color:#c1d4cc}

readNode.html

<html>
<head>
<link rel="stylesheet" href="readXML.css"
type="text/css">
<title>
Read the whole list
</title>
<xml ID="writersXML"
SRC="writers.xml"></xml>
<script language="JavaScript">
function findWriters() {
 var myXML, myNodes;
 var display="";
 myXML= document.all("writersXML").XMLDocument;
 //Put the <name> element into an object.
 myNodes=myXML.getElementsByTagName("name");
 //Extract the different values using a loop.

Java Script and XML

178 Self-Instruction Manual

Notes

 for(var
counter=0;counter<myNodes.length;counter++) {
 display +=
myNodes.item(counter).firstChild.nodeValue +
"\n";
 }
 document.show.me.value=display;
}
</script>
</head>
<body>

Read All Data

<div>
<form name="show">
<textarea name="me" cols=30
rows=5></textarea><p>
<input type="button" value="Show all"
onClick="findWriters()">
</form>
</div>
</body>
</html>

9.3AJAX

AJAX stands for Asynchronous JavaScript And XML.AJAX is not a

programming language.AJAX just uses a combination of:

 A browser built-in XMLHttpRequest object (to request data

from a web server)

 JavaScript and HTML DOM (to display or use the data)

AJAX allows web pages to be updated asynchronously by exchanging data

with a web server behind the scenes. This means that it is possible to

update parts of a web page, without reloading the whole page.

1. An event occurs in a web page (the page is loaded, a button is

clicked)

2. An XMLHttpRequest object is created by JavaScript

3. The XMLHttpRequest object sends a request to a web server

4. The server processes the request

5. The server sends a response back to the web page

6. The response is read by JavaScript

7. Proper action (like page update) is performed by JavaScript

Java Script and XML

179 Self-Instruction Manual

Notes

Example 9.2

<!DOCTYPE html>
<html>
<body>

<div id="demo">
<h1>The XMLHttpRequest Object</h1>
<button type="button" onclick="loadDoc()">Change
Content</button>
</div>

<script>
function loadDoc() {
 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status ==
200) {
 document.getElementById("demo").innerHTML =
 this.responseText;
 }
 };
 xhttp.open("GET", "ajax_info.txt", true);
 xhttp.send();
}
</script>
</body>
</html>

Output – Initial Screen

Java Script and XML

180 Self-Instruction Manual

Notes

After clicking the “Change Content” Button

AJAX is usually called as a developer's dream, because we can:

 Update a web page without reloading the page

 Request data from a server - after the page has loaded

 Receive data from a server - after the page has loaded

 Send data to a server - in the background

AJAX can be used for interactive communication with an XML file.

Example 9.3

cd_catalog.xml

<?xml version="1.0" ?>
<CATALOG>
<CD>
<TITLE>Empire Burlesque</TITLE>
<ARTIST>Bob Dylan</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Columbia</COMPANY>
<PRICE>10.90</PRICE>
<YEAR>1985</YEAR>
</CD>
<CD>
<TITLE>Hide your heart</TITLE>
<ARTIST>Bonnie Tyler</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>CBS Records</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1988</YEAR>
</CD>
<CD>
<TITLE>Greatest Hits</TITLE>
<ARTIST>Dolly Parton</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>RCA</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1982</YEAR>
</CD>
</CATALOG>

Java Script and XML

181 Self-Instruction Manual

Notes

catalog.html

<!DOCTYPE html>
<html>
<style>
table,th,td {
 border : 1px solid black;
 border-collapse: collapse;
}
th,td {
 padding: 5px;
}
</style>
<body>

<h1>The XMLHttpRequest Object</h1>

<button type="button" onclick="loadDoc()">Get my
CD collection</button>

<table id="demo"></table>

<script>
function loadDoc() {
 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status ==
200) {
 myFunction(this);
 }
 };
 xhttp.open("GET", "cd_catalog.xml", true);
 xhttp.send();
}
function myFunction(xml) {
 var i;
 var xmlDoc = xml.responseXML;
 var
table="<tr><th>Artist</th><th>Title</th></tr>";
 var x = xmlDoc.getElementsByTagName("CD");
 for (i = 0; i <x.length; i++) {
 table += "<tr><td>" +

x[i].getElementsByTagName("ARTIST")[0].childNodes[
0].nodeValue +
 "</td><td>" +

x[i].getElementsByTagName("TITLE")[0].childNodes[0
].nodeValue +
 "</td></tr>";
 }

Java Script and XML

182 Self-Instruction Manual

Notes

 document.getElementById("demo").innerHTML =
table;
}
</script>

</body>
</html>

Output

9.4DOM BASED XML PROCESSING

The XML DOM (Document Object Model) defines the properties and

methods for accessing and editing XML.However, before an XML

document can be accessed, it must be loaded into an XML DOM

object.All modern browsers have a built-in XML parser that can convert

text into an XML DOM object.

An XML DOM parser is created using the following statement

parser = new DOMParser();

The parser creates a new XML DOM object using the text string:

xmlDoc = parser.parseFromString(text,"text/xml");

Example 9.4

<!DOCTYPE html>
<html>
<body>
<p id="demo"></p>

<script>
var parser, xmlDoc;
var text = "<bookstore><book>" +
"<title>Everyday Italian</title>" +
"<author>Giada De Laurentiis</author>" +

Java Script and XML

https://www.w3schools.com/xml/dom_intro.asp

183 Self-Instruction Manual

Notes

"<year>2005</year>" +
"</book></bookstore>";

parser = new DOMParser();
xmlDoc = parser.parseFromString(text,"text/xml");

document.getElementById("demo").innerHTML =
xmlDoc.getElementsByTagName("title")[0].childNodes
[0].nodeValue;
</script>

</body>
</html>

Output

Everyday Italian

DOM Tree for the Bookstore xml data:

9.5SAX

SAX (Simple API for XML) is an event-based parser for XML

documents. Unlike a DOM parser, a SAX parser creates no parse tree.

SAX is a streaming interface for XML, which means that applications

using SAX receive event notifications about the XML document being

processed an element, and attribute, at a time in sequential order starting

at the top of the document, and ending with the closing of the ROOT

element.

 Reads an XML document from top to bottom, recognizing the

tokens that make up a well-formed XML document.

Java Script and XML

184 Self-Instruction Manual

Notes

 Tokens are processed in the same order that they appear in the

document.

 Reports the application program the nature of tokens that the

parser has encountered as they occur.

 The application program provides an "event" handler that

must be registered with the parser.

 As the tokens are identified, callback methods in the

handler are invoked with the relevant information.

Uses a SAX parser

 We can process the XML document in a linear fashion from top

to down.

 The document is not deeply nested.

 You are processing a very large XML document whose DOM

tree would consume too much memory. Typical DOM

implementations use ten bytes of memory to represent one byte

of XML.

 The problem to be solved involves only a part of the XML

document.

 Data is available as soon as it is seen by the parser, so SAX

works well for an XML document that arrives over a stream.

Disadvantages of SAX

 We have no random access to an XML document since it is

processed in a forward-only manner.

 If you need to keep track of data that the parser has seen or

change the order of items, you must write the code and store the

data on your own.

ContentHandler Interface

This interface specifies the callback methods that the SAX parser uses

to notify an application program of the components of the XML document

that it has seen.

 void startDocument() − Called at the beginning of a document.

 void endDocument() − Called at the end of a document.

 void startElement(String uri, String localName, String

qName, Attributes atts) − Called at the beginning of an

element.

 void endElement(String uri, String localName,String

qName) − Called at the end of an element.

 void characters(char[] ch, int start, int length) − Called when

character data is encountered.

Java Script and XML

185 Self-Instruction Manual

Notes

 void ignorableWhitespace(char[] ch, int start, int length) −

Called when a DTD is present and ignorable whitespace is

encountered.

 void processingInstruction(String target, String data) −

Called when a processing instruction is recognized.

 void setDocumentLocator(Locator locator)) − Provides a

Locator that can be used to identify positions in the document.

 void skippedEntity(String name) − Called when an

unresolved entity is encountered.

 void startPrefixMapping(String prefix, String uri) − Called

when a new namespace mapping is defined.

 void endPrefixMapping(String prefix) − Called when a

namespace definition ends its scope.

Attributes Interface

This interface specifies methods for processing the attributes connected to

an element.

 int getLength() − Returns number of attributes.

 String getQName(int index)

 String getValue(int index)

 String getValue(String qname)

Example 9.5

input.xml

<?xml version = "1.0"?>
<class>
<student rollno = "393">
<firstname>dinkar</firstname>
<lastname>kad</lastname>
<nickname>dinkar</nickname>
<marks>85</marks>
</student>

<student rollno = "493">
<firstname>Vaneet</firstname>
<lastname>Gupta</lastname>
<nickname>vinni</nickname>
<marks>95</marks>
</student>

<student rollno = "593">
<firstname>jasvir</firstname>
<lastname>singn</lastname>

Java Script and XML

186 Self-Instruction Manual

Notes

<nickname>jazz</nickname>
<marks>90</marks>
</student>
</class>

UserHandler.java

package com.aludde.xml;

import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;

public class UserHandler extends DefaultHandler {

 boolean bFirstName = false;
 boolean bLastName = false;
 boolean bNickName = false;
 boolean bMarks = false;

 @Override
 public void startElement(String uri,
 String localName, String qName, Attributes
attributes) throws SAXException {

 if (qName.equalsIgnoreCase("student")) {
 String rollNo =
attributes.getValue("rollno");
 System.out.println("Roll No : " +
rollNo);
 } else if
(qName.equalsIgnoreCase("firstname")) {
 bFirstName = true;
 } else if
(qName.equalsIgnoreCase("lastname")) {
 bLastName = true;
 } else if
(qName.equalsIgnoreCase("nickname")) {
 bNickName = true;
 }
 else if (qName.equalsIgnoreCase("marks")) {
 bMarks = true;
 }
 }

 @Override
 public void endElement(String uri,
 String localName, String qName) throws
SAXException {
 if (qName.equalsIgnoreCase("student")) {

Java Script and XML

187 Self-Instruction Manual

Notes

 System.out.println("End Element :" +
qName);
 }
 }

 @Override
 public void characters(char ch[], int start,
int length) throws SAXException {

 if (bFirstName) {
 System.out.println("First Name: "
 + new String(ch, start, length));
 bFirstName = false;
 } else if (bLastName) {
 System.out.println("Last Name: " + new
String(ch, start, length));
 bLastName = false;
 } else if (bNickName) {
 System.out.println("Nick Name: " + new
String(ch, start, length));
 bNickName = false;
 } else if (bMarks) {
 System.out.println("Marks: " + new
String(ch, start, length));
 bMarks = false;
 }
 }
}

SAXParserDemo.java

package com.aludde.xml;

import java.io.File;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;

public class SAXParserDemo {

 public static void main(String[] args) {

 try {
 File inputFile = new File("input.xml");
 SAXParserFactory factory =
SAXParserFactory.newInstance();

Java Script and XML

188 Self-Instruction Manual

Notes

 SAXParser saxParser =
factory.newSAXParser();
 UserHandler userhandler = new
UserHandler();
 saxParser.parse(inputFile, userhandler);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

class UserHandler extends DefaultHandler {

 boolean bFirstName = false;
 boolean bLastName = false;
 boolean bNickName = false;
 boolean bMarks = false;

 @Override
 public void startElement(
 String uri, String localName, String qName,
Attributes attributes)
 throws SAXException {

 if (qName.equalsIgnoreCase("student")) {
 String rollNo =
attributes.getValue("rollno");
 System.out.println("Roll No : " +
rollNo);
 } else if
(qName.equalsIgnoreCase("firstname")) {
 bFirstName = true;
 } else if
(qName.equalsIgnoreCase("lastname")) {
 bLastName = true;
 } else if
(qName.equalsIgnoreCase("nickname")) {
 bNickName = true;
 }
 else if (qName.equalsIgnoreCase("marks")) {
 bMarks = true;
 }
 }

 @Override
 public void endElement(String uri,
 String localName, String qName) throws
SAXException {

 if (qName.equalsIgnoreCase("student")) {

Java Script and XML

189 Self-Instruction Manual

Notes

 System.out.println("End Element :" +
qName);
 }
 }

 @Override
 public void characters(char ch[], int start,
int length) throws SAXException {

 if (bFirstName) {
 System.out.println("First Name: " + new
String(ch, start, length));
 bFirstName = false;
 } else if (bLastName) {
 System.out.println("Last Name: " + new
String(ch, start, length));
 bLastName = false;
 } else if (bNickName) {
 System.out.println("Nick Name: " + new
String(ch, start, length));
 bNickName = false;
 } else if (bMarks) {
 System.out.println("Marks: " + new
String(ch, start, length));
 bMarks = false;
 }
 }
}

Output

Roll No : 393
First Name: dinkar
Last Name: kad
Nick Name: dinkar
Marks: 85
End Element :student
Roll No : 493
First Name: Vaneet
Last Name: Gupta
Nick Name: vinni
Marks: 95
End Element :student
Roll No : 593
First Name: jasvir
Last Name: singn
Nick Name: jazz
Marks: 90
End Element :student

Java Script and XML

190 Self-Instruction Manual

Notes

9.6XSL, XSLT, XPATH

Before learning XSLT, we should first understand XSL which stands for

EXtensible Stylesheet Language. It is similar to XML as CSS is to HTML.

Need for XSL

In case of HTML document, tags are predefined such as table, div,

and span; and the browser knows how to add style to them and display

those using CSS styles. But in case of XML documents, tags are not

predefined. In order to understand and style an XML document, World

Wide Web Consortium (W3C) developed XSL which can act as XML

based Stylesheet Language. An XSL document specifies how a browser

should render an XML document.

The Extensible Stylesheet Language (XSL) has three major

subcomponents:

 XSLT − used to transform XML document into various other types

of document.

 XPath − used to navigate XML document.

 XSL-FO − used to format XML document.

XSLT

XSLT, Extensible Stylesheet Language Transformations, provides the

ability to transform XML data from one format to another automatically.

Figure 9.1. Working of XSLT

Java Script and XML

191 Self-Instruction Manual

Notes

An XSLT stylesheet is used to define the transformation rules to be applied

on the target XML document. XSLT stylesheet is written in XML format.

XSLT Processor takes the XSLT stylesheet and applies the transformation

rules on the target XML document and then it generates a formatted

document in the form of XML, HTML, or text format. This formatted

document is then utilized by XSLT formatter to generate the actual output

which is to be displayed to the end-user.

Advantages

 Independent of programming. Transformations are written in a

separate xsl file which is again an XML document.

 Output can be altered by simply modifying the transformations

in xsl file. No need to change any code. So Web designers can

edit the stylesheet and can see the change in the output quickly.

Example 9.6

<?xml version="1.0" encoding="UTF-8"?>
<breakfast_menu>

<food>
<name>Belgian Waffles</name>
<price>$5.95</price>
<description>Two of our famous Belgian Waffles
with plenty of real maple syrup</description>
<calories>650</calories>
</food>

<food>
<name>Strawberry Belgian Waffles</name>
<price>$7.95</price>
<description>Light Belgian waffles covered with
strawberries and whipped cream</description>
<calories>900</calories>
</food>

<food>
<name>Berry-Berry Belgian Waffles</name>
<price>$8.95</price>
<description>Light Belgian waffles covered with an
assortment of fresh berries and whipped
cream</description>
<calories>900</calories>
</food>

<food>
<name>French Toast</name>
<price>$4.50</price>
<description>Thick slices made from our homemade
sourdough bread</description>

Java Script and XML

192 Self-Instruction Manual

Notes

<calories>600</calories>
</food>

<food>
<name>Homestyle Breakfast</name>
<price>$6.95</price>
<description>Two eggs, bacon or sausage, toast,
and our ever-popular hash browns</description>
<calories>950</calories>
</food>

</breakfast_menu>

Output before applying XSLT

Using XSLT to transform XML into HTML

<?xml version="1.0" encoding="UTF-8"?>
<html xsl:version="1.0" xmlns:xsl="http://www.w3.o
rg/1999/XSL/Transform">
<body style="font-family:Arial;font-
size:12pt;background-color:#EEEEEE">

<xsl:for-each select="breakfast_menu/food">

<div style="background-
color:teal;color:white;padding:4px">

<xsl:value-
of select="name"/> -

<xsl:value-of select="price"/>

</div>
<div style="margin-left:20px;margin-
bottom:1em;font-size:10pt">

<p>
 <xsl:value-of select="description"/>
 (<xsl:value-
of select="calories"/> calories per

Java Script and XML

193 Self-Instruction Manual

Notes

serving)
</p>
</div>
</xsl:for-each>
</body>
</html>

Output after applying XSLT

XPATH

XPath is an official recommendation of the World Wide Web Consortium

(W3C). It defines a language to find information in an XML file. It is used

to traverse elements and attributes of an XML document. XPath provides

various types of expressions which can be used to enquire relevant

information from the XML document.

 Structure Definitions − XPath defines the parts of an XML

document like element, attribute, text, namespace, processing-

instruction, comment, and document nodes

 Path Expressions − XPath provides powerful path expressions

select nodes or list of nodes in XML documents.

 Standard Functions − XPath provides a rich library of standard

functions for manipulation of string values, numeric values,

date and time comparison, node and QName manipulation,

sequence manipulation, Boolean values etc.

 Major part of XSLT − XPath is one of the major elements in

XSLT standard and is must have knowledge in order to work

with XSLT documents.

 W3C recommendation − XPath is an official recommendation

of World Wide Web Consortium (W3C).

Points to remember

 XPath is core component of XSLT standard.

 XSLT cannot work without XPath.

 XPath is basis of XQuery and XPointer.

Java Script and XML

194 Self-Instruction Manual

Notes

An XPath expression generally defines a pattern in order to select a set of

nodes. These patterns are used by XSLT to perform transformations or by

XPointer for addressing purpose.

XPath specification specifies seven types of nodes which can be the

output of execution of the XPath expression.

 Root

 Element

 Text

 Attribute

 Comment

 Processing Instruction

 Namespace

XPath uses a path expression to select node or a list of nodes from an

XML document.

Following is the list of useful paths and expression to select any node/ list

of nodes from an XML document.

S.No. Expression & Description

1 node-name

Select all nodes with the given name "nodename"

2 /

Selection starts from the root node

3 //

Selection starts from the current node that match the

selection

4 .
Selects the current node

5 ..
Selects the parent of the current node

6 @
Selects attributes

7 student
Example − Selects all nodes with the name "student"

8 class/student
Example − Selects all student elements that are children

of class

9 //student

Selects all student elements no matter where they are in

the document

Example 9.7

In this example, we've created a sample XML document, students.xml and

its stylesheet document students.xsl which uses the XPath expressions

under select attribute of various XSL tags to get the values of roll no,

firstname, lastname, nickname and marks of each student node.

Java Script and XML

195 Self-Instruction Manual

Notes

students.xml

<?xml version = "1.0"?>
<?xml-stylesheet type = "text/xsl" href =
"students.xsl"?>
<class>
<student rollno = "393">
<firstname>Dinkar</firstname>
<lastname>Kad</lastname>
<nickname>Dinkar</nickname>
<marks>85</marks>
</student>
<student rollno = "493">
<firstname>Vaneet</firstname>
<lastname>Gupta</lastname>
<nickname>Vinni</nickname>
<marks>95</marks>
</student>
<student rollno = "593">
<firstname>Jasvir</firstname>
<lastname>Singh</lastname>
<nickname>Jazz</nickname>
<marks>90</marks>
</student>
</class>

students.xsl

<?xml version = "1.0" encoding = "UTF-8"?>
<xsl:stylesheet version = "1.0"
 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">

<xsl:template match = "/">
<html>
<body>
<h2>Students</h2>
<table border = "1">
<tr bgcolor = "#9acd32">
<th>Roll No</th>
<th>First Name</th>
<th>Last Name</th>
<th>Nick Name</th>
<th>Marks</th>
</tr>
<xsl:for-each select = "class/student">
<tr>
<td><xsl:value-of select = "@rollno"/></td>
<td><xsl:value-of select = "firstname"/></td>
<td><xsl:value-of select = "lastname"/></td>
<td><xsl:value-of select = "nickname"/></td>
<td><xsl:value-of select = "marks"/></td>
</tr>
</xsl:for-each>
</table>

Java Script and XML

196 Self-Instruction Manual

Notes

</body>
</html>
</xsl:template>

</xsl:stylesheet>

Output

9.7 ANSWERS TO CHECK YOUR PROGRESS

1. AJAX stands for Asynchronous JavaScript And XML.

2. An XML DOM parser is created using the following statement

parser = new DOMParser();

3. SAX (Simple API for XML) is an event-based parser for XML

documents. Unlike a DOM parser, a SAX parser creates no parse

tree

4. The Extensible Stylesheet Language (XSL) has three major

subcomponents:
 XSLT − used to transform XML document into various

other types of document.

 XPath − used to navigate XML document.

 XSL-FO − used to format XML document

9.8 LET US SUM UP

Several key methods and properties in JavaScript can help in getting

information from an XML file.

Check Your Progress

1. Expand AJAX.

2. How to create an XML DOM parser?

3. What is SAX?

4. What are the subcomponents of XSL?

Java Script and XML

197 Self-Instruction Manual

Notes

AJAX stands for Asynchronous JavaScript And XML.

AJAX allows web pages to be updated asynchronously by

exchanging data with a web server behind the scenes. This means

that it is possible to update parts of a web page, without reloading

the whole page.

The XML DOM (Document Object Model) defines the properties

and methods for accessing and editing XML.

An XML DOM parser is created using the following statement

parser = new DOMParser();

SAX (Simple API for XML) is an event-based parser for XML

documents. Unlike a DOM parser, a SAX parser creates no parse

tree.

XSL stands for EXtensible Stylesheet Language.

The Extensible Stylesheet Language (XSL) has three major

subcomponents:

 XSLT − used to transform XML document into various

other types of document.

 XPath − used to navigate XML document.

 XSL-FO − used to format XML document.

9.9 SELF-ASSESSMENT EXERCISES

Short Questions

1. List the uses of SAX

2. What is the need for XSL?

3. State the advantages of XSLT.

Detail Questions

1. Explain about the XSL with suitable example.

2. Describe the working of XSLT.

3. Discuss in detail about XPATH

Java Script and XML

https://www.w3schools.com/xml/dom_intro.asp

198 Self-Instruction Manual

Notes

9.10SUGGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. www.w3schools.com

Java Script and XML

199 Self-Instruction Manual

Notes

BLOCK – IV

SERVER SIDE PROGRAMMING

UNIT- 10 JAVA SERVLETS

Structure

10.0 Introduction

10.1 Objectives

10.2 History of web applications

10.3 The power of Servlets

10.4 HTTP Servlet basics

10.5 The Servlet API

10.6 Page Generations

10.7 Answers to Check Your Progress

10.8 Let us Sum up

10.9 Self-Assessment Exercises

10.10 Suggested Readings

10.0 INTRODUCTION

The rise of server-side Java applications is one of the latest and most

exciting trends in Java programming. Java servlets are a key component of

server-side Java development. A servlet is a small, pluggable extension to

a server that enhances the server‘s functionality. Servlets allow developers

to extend and customize any Java-enabled server - a web server, a mail

server, an application server, or any custom server - with a previously

unknown degree of portability, flexibility, and ease.

10.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the history of web applications

 Learn the basics of Java Servlets

 Develop a Servlet API

10.2HISTORY OF WEB APPLICATIONS

While servlets can be used to extend the functionality of any Java-enabled

server, they are most often used to extend web servers, providing a

powerful, efficient replacement for CGI scripts. When you use a servlet to

create dynamic content for a web page or otherwise extend the

functionality of a web server, you are in effect creating a web application.

Java Servlets

200 Self-Instruction Manual

Notes

While a web page merely displays static content and lets the user navigate

through that content, a web application provides a more interactive

experience. A web application can be as simple as a keyword search on a

document archive or as complex as an electronic storefront. Web

applications are being deployed on the Internet and on corporate intranets

and extranets, where they have the potential to increase productivity and

change the way that companies, large and small, do business.

To understand the power of servlets, we need to step back and look at

some of the other approaches that can be used to create web applications.

Common Gateway Interface

The Common Gateway Interface, normally referred to as CGI, was one of

the first practical techniques for creating dynamic content. With CGI, a

web server passes certain requests to an external program. The output of

this program is then sent to the client in place of a static file. The advent of

CGI made it possible to implement all sorts of new functionality in web

pages, and CGI quickly became a de facto standard, implemented on

dozens of web servers.

It‘s interesting to note that the ability of CGI programs to create dynamic

web pages is a side effect of its intended purpose: to define a standard

method for an information server to talk with external applications. This

origin explains why CGI has perhaps the worst life cycle imaginable.

When a server receives a request that accesses a CGI program, it must

create a new process to run the CGI program and then pass to it, via

environment variables and standard input, every bit of information that

might be necessary to generate a response. Creating a process for every

such request requires time and significant server resources, which limits

the number of requests a server can handle concurrently. Figure 10.1

shows the CGI life cycle.Even though a CGI program can be written in

almost any language, the Perl programming language has become the

predominantchoice.

Figure 10.1 The CGI life cycle

Another often-overlooked problem with CGI is that a CGI program cannot

interact with the web server or take advantage of the server's abilities once

it begins execution, because it is running in a separate process. For

example, a CGI script cannot write to the server's log file.

Java Servlets

201 Self-Instruction Manual

Notes

Other Solutions

CGI/Perl has the advantage of being a more-or-less platform-independent way

to produce dynamic web content. Other well-known technologies for creating

web applications, such as ASP and server-side JavaScript, are proprietary

solutions that work only with certain web servers.

Java Servlets

A Servlet is a generic server extension - a Java class that can be loaded

dynamically to expand the functionality of a server. Servlets are commonly

used with web servers, where they can take the place of CGI scripts. A servlet

is similar to a proprietary server extension, except that it runs inside a Java

Virtual Machine (JVM) on the server (Figure10.2), so it is safe and portable.

Servlets operate solely within the domain of the server: unlike applets, they do

not require support for Java in the web browser.

Figure 10.2 The Servlet life cycle

Unlike CGI and FastCGI, which must use multiple processes to handle

separate programs and/or separate requests, servlets can allbe handled by

separate threads within the same process or by threads within multiple

processes spread across a number ofbackend servers.

This means that servlets are also efficient and scalable. Because servlets run

with bidirectional communication tothe web server, they can interact very

closely with the server to do things that are not possible with CGI

scripts.Another advantage of servlets is that they are portable: both across

operating systems as we are used to with Java and also acrossweb servers.

10.3THE POWER OF SERVLETS

The Servlets offer a numberof advantages over other approaches. They are

listed below.

Portability

Because servlets are written in Java and conform to a well-defined and widely

accepted API, they are highly portable across operating systems and across

server implementations. With servlets, you can truly "write once, serve

everywhere."

Java Servlets

202 Self-Instruction Manual

Notes

Power
Servlets can harness the full power of the core Java APIs: networking and

URL access, multithreading, image manipulation, datacompression, database

connectivity (JDBC), object serialization, internationalization, remote method

invocation (RMI), and legacyintegration (CORBA). Servlets can also take

advantage of the J2EE platform that includes support for Enterprise JavaBeans

(EJBs), distributed transactions (JTS), standardized messaging (JMS),

directory lookup (JNDI), and advanced database access(JDBC 2.0).

Efficiency and Endurance

Servlet invocation is highly efficient. Once a servlet is loaded, it remains in

the server's memory as a single object instance. Thereafter, the server invokes

the servlet to handle a request using a simple, lightweight method invocation.

Servlets are naturally enduring objects. Because a servlet stays in the server's

memory as a single object instance, it automatically maintains its state and can

hold on to external resources, such as database connections.

Safety

Servlets support safe programming practices on a number of levels. Because

they are written in Java, servlets inherit the strong typesafety of the Java

language. In addition, the Servlet API is implemented to be type-safe.

Elegance

The elegance of servlet code is striking. Servlet code is clean, object oriented,

modular, and amazingly simple.

Integration

Servlets are tightly integrated with the server. This integration allows a servlet

to cooperate with the server in ways that a CGIprogram cannot.

Extensibility and Flexibility

The Servlet API is designed to be easily extensible. As it stands today, the API

includes classes with specialized support for HTTPservlets. But at a later date,

it could be extended and optimized for another type of servlets, either by Sun

or by a third party.Servlets are also quite flexible in how they create content.

They can generate simple content using out.println() statements, orthey can

generate complicated sets of pages using a template engine. Servlets can even

be builtupon to create brand new technologies like JavaServer Pages.

10.4HTTP SERVLET BASICS

HTTP is a simple, stateless protocol. A client, such as a web browser,

makes a request, the web serverresponds, and the transaction is done.

When the client sends a request, the first thing it specifies is an HTTP

command, called a method that tells the server the type of action it wants

performed.

Java Servlets

203 Self-Instruction Manual

Notes

When a client connects to a server and makes an HTTP request, the request

can be of several different types, called methods. Themost frequently used

methods are GET and POST. Put simply, the GET method is designed for

getting information (a document, achart, or the results from a database

query), while the POST method is designed for posting information (a

credit card number,some new chart data, or information that is to be stored

in a database). Simply

 GET is for reading

 POST is for tacking up new material

The GET method, although it's designed for reading information, can

include as part of the request some of its own information thatbetter

describes what to get—such as an x, y scale for a dynamically created

chart. This information is passed as a sequence ofcharacters appended to

the request URL in what's called a query string.

The POST method uses a different technique to send information to the

server because in some cases it may need to sendmegabytes of information.

A POST request passes all its data, of unlimited length, directly over the

socket connection as part of itsHTTP request body. The exchange is

invisible to the client. The URL doesn't change at all.

In addition to GET and POST, there are several other lesser-used HTTP

methods. There's the HEAD method, which is sent by aclient when it wants

to see only the headers of the response, to determine the document's size,

modification time, or generalavailability. There's also PUT, to place

documents directly on the server, and DELETE, to do just the opposite.

These last twoaren't widely supported due to complicated policy issues.

10.5THE SERVLET API

Servlets use classes and interfaces from two packages: javax.servlet

and javax.servlet.http. The javax.servlet package contains

classes and interfaces to support generic, protocol independent servlets.

These classes are extended by the classes in the javax.servlet.http

package to add HTTP-specific functionality.

Every servlet must implement the javax.servlet.Servlet interface.

Most servlets implement this interface by extending one oftwo special

classes:

javax.servlet.GenericServlet

or

javax.servlet.http.HttpServlet.

A protocol-independentservlet should subclass GenericServlet, while

an HTTP servlet should subclass HttpServlet, which is itself a subclass

ofGenericServlet with added HTTP-specific functionality.

Java Servlets

204 Self-Instruction Manual

Notes

Unlike a regular Java program, and just like an applet, a servlet does not

have a main() method. Instead, certain methods of aservlet are invoked

by the server in the process of handling requests. Each time the server

dispatches a request to a servlet, itinvokes the servlet's service()

method.

A generic servlet should override its service() method to handle

requests as appropriate for the servlet. The service()method accepts

two parameters: a request object and a response object. The request object

tells the servlet about the request,while the response object is used to return

a response. Figure 10.3 shows how a generic servlet handles requests.

Figure 10.3A generic servlet handling a request

10.6PAGE GENERATIONS

The most basic type of HTTP servlet generates a full HTML page. Such a

servlet has access to the same information usually sent toa CGI script, plus

a bit more. A servlet that generates an HTML page can be used for all the

tasks for which CGI is used currently,such as for processing HTML forms,

producing reports from a database, taking orders, checking identities, and

so forth.

Example 10.1 : A Servlet That Prints "Hello World"

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class HelloWorld extends HttpServlet
{
public void doGet(HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML>");
out.println("<HEAD><TITLE>Hello
World</TITLE></HEAD>");
out.println("<BODY>");
out.println("<BIG>Hello World</BIG>");
out.println("</BODY></HTML>");

Java Servlets

205 Self-Instruction Manual

Notes

}
}

10.7 ANSWERS TO CHECK YOUR PROGRESS

1. Advantages of using Servlets

 Portability

 Power

 Efficiency and Endurance

 Safety

 Elegance

 Integration

 Extensibility and Flexibility.

2. The most frequently used methods are GET and POST.

 GET is for reading

 POST is for tacking up new material

3. Most servlets implement its interface by extending one of two

special classes:

javax.servlet.GenericServlet(or)javax.servlet.htt
p.HttpServlet

10.8 LET US SUM UP

A servlet is a small, pluggable extension to a server that enhances the

server‘s functionality.

The Common Gateway Interface, normally referred to as CGI, was one

of the first practical techniques for creating dynamic content

Servlets are commonly used with web servers, where they can take the

place of CGI scripts

Advantages of using Servlets

 Portability

 Power

 Efficiency and Endurance

Check Your Progress

1. List the advantages of Servlets

2. What are the common methods used to process requests?

3. What are the classes used to implement Servlet interface?

Java Servlets

206 Self-Instruction Manual

Notes

 Safety

 Elegance

 Integration

 Extensibility and Flexibility

A client, such as a web browser, makes a request, the web

serverresponds, and the transaction is done.

When the client sends a request, the first thing it specifies is an HTTP

command, called a method that tells the server the type of action it

wants performed.

Themost frequently used methods are GET and POST.

 GET is for reading

 POST is for tacking up new material

A sequence ofcharacters appended to the request URL is called asquery

string

Servlets use classes and interfaces from two packages:

javax.servlet and javax.servlet.http.

The most basic type of HTTP servlet generates a full HTML page.

10.9 SELF-ASSESSMENT EXERCISES

Short Questions

1. What is CGI?

2. What do you mean by a method?

3. What is a query string?

4. List the packages for Servlets.

Detail Questions

1. Write a note on history of web applications.

2. Discuss about the power of Servlets.

3. Write a simple Servlet to display ―Hello World‖. Explain the code.

10.10SUGGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. Java servlet Programming, Joson Hunter, o‘Reilly,2010

Java Servlets

207 Self-Instruction Manual

Notes

UNIT- 11 SERVLET LIFE CYCLE

Structure

11.0 Introduction

11.1 Objectives

11.2 The Servlet alternative

11.3 Servlet Reloading

11.4 Init And Destroy

11.5 Single Thread Model

11.6 Background Processing

11.7 Load On Startup

11.8 Client Side Caching and Server Side Caching

11.9 Answers to Check Your Progress

11.10 Let us Sum up

11.11 Self-Assessment Exercises

11.12 Suggested Readings

11.0 INTRODUCTION

The servlet life cycle is one of the most exciting features of servlets. This

life cycleis a powerful hybrid of the life cycles used in CGI programming

and lower-levelNSAPI and ISAPI programming.ISAPI (Internet Server

API) is a Microsoft API, and provides speed improvements over CGI

programs. NSAPI (Netscape Server API) is a Netscape API, provides

speed improvements over CGI programs.

11.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the Servlet life cycle

 Learn about Single thread model

 Know the basics of Cliend side and Server side caching

11.2 THE SERVLET ALTERNATIVE

The servlet life cycle allows servlet engines to address both the

performance andresource problems of CGI and the security concerns of

low-level server APIprogramming. A servlet engine may execute all its

servlets in a single Java virtualmachine (JVM). Because they are in the

same JVM, servlets can efficiently sharedata with each other, yet they are

prevented by the Java language from accessingone another‘s private data.

Servlets may also be allowed to persist between requestsas object

instances, taking up far less memory than full-fledged processes.

Servlet Life Cycle

208 Self-Instruction Manual

Notes

Servers have significant flexibility in how they choose to support servlets.

Theonly hard and fast rule is that a servlet engine must conform to the

following lifecycle contract:

1. Create and initialize the servlet.

2. Handle zero or more service calls from clients.

3. Destroy the servlet and then garbage collects it.

It‘s perfectly legal for a servlet to be loaded, created and instantiated in its

ownJVM, only to be destroyed and garbage collected without handling any

clientrequests or after handling just one request.

To demonstrate the servlet life cycle, we‘ll begin with a simple

example.Example 11.1 shows a servlet that counts and displays the number

of times it hasbeen accessed.

Example 11.1 – A simple counter

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class SimpleCounter extends HttpServlet
{

int count = 0;

public void doGet(HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException
{
res.setContentType("text/plain");
PrintWriter out = res.getWriter();
count++;
out.println("Since loading, this servlet has been
accessed " +
count + " times.");
}

}

The code is simple – it just prints and increments the instance variable

namedcount – but it shows the power of persistence. When the server loads

this servlet,the server creates a single instance to handle every request

made of the servlet.That‘s why this code can be so simple. The same

instance variables exist betweeninvocations and for all invocations.

From the servlet-developer‘s perspective, each client is another thread that

callsthe servlet via the service(), doGet(), or doPost() methods,

as shown inFigure 11.1.

Servlet Life Cycle

209 Self-Instruction Manual

Notes

Figure 11.1 Many threads, one servlet instance

If, instead, it needed to track the count forall instances, it can in some cases

use a class, orstatic, variable. These variables are shared across all

instances of a class.Example 11.2 demonstrates with a servlet that counts

three things: the times it hasbeen accessed, the number of instances created

by the server (one per name), andthe total times all of them have been

accessed.

Example 11.2 – A more holistic counter

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class HolisticCounter extends HttpServlet {
static int classCount = 0;
// shared by all instances
int count = 0; // separate for each servlet
static Hashtable instances = new Hashtable();
public void doGet(HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException {
res.setContentType("text/plain");
PrintWriter out = res.getWriter();
count++;
out.println("Since loading, this servlet instance
has been accessed " +
count + " times.");
// Keep track of the instance count by putting a
// reference to thisinstance in a Hashtable.
// Duplicate entries are ignored.The size() method
// returns the number of unique instances stored.
instances.put(this, this);
out.println("There are currently " +
instances.size() + " instances.");
classCount++;
out.println("Across all instances, this servlet
class has been " +"accessed " + classCount + "
times.");
}
}

Servlet Life Cycle

210 Self-Instruction Manual

Notes

11.3 SERVLET RELOADING

Servlet reloading may appear to be a simple feature, but it‘s actually quite

a trickand requires quite a hack. ClassLoader objects are designed to

load a class justonce. To get around this limitation and load servlets again

and again, servers usecustom class loaders that load servlets from the

default servlets directory. Thisexplains why the servlet classes are found in

server_root/servlets, even thoughthat directory doesn‘t appear in

the server‘s classpath.

When a server dispatches a request to a servlet, it first checks if the

servlet‘s classfile has changed on disk. If it has changed, the server

abandons the class loaderused to load the old version and creates a new

instance of the custom class loaderto load the new version. Old servlet

versions can stay in memory indefinitely, but theold versions are not used

to handle any more requests.

Servlet reloading is not performed for classes found in the server‘s

classpath (suchas server_root/classes) because those classes are loaded by

the core, primordialclass loader. These classes are loaded once and retained

in memory even whentheir class files change.

11.4 INIT AND DESTROY

Just like applets, servlets can define init() and destroy() methods. A

servlet‘sinit(ServletConfig) method is called by the server

immediately after theserver constructs the servlet‘s instance. Depending on

the server and its configuration,this can be at any of these times:

 When the server starts

 When the servlet is first requested, just before the service()

method is invoked

 At the request of the server administrator

In any case, init() is guaranteed to be called before the servlet handles

its firstrequest.The init() method is typically used to perform servlet

initialization – creating orloading objects that are used by the servlet in the

handling of its requests. In order to provide a new servlet any

informationabout itself and its environment, a server had to call a servlet‘s

init() methodand pass along an object that implements the

ServletConfig interface.

The server calls a servlet‘s destroy() method when the servlet is about

to beunloaded. In the destroy() method, a servlet should free any

resources it hasacquired that will not be garbage collected. The

destroy() method also gives aservlet a chance to write out its unsaved

cached information or any persistentinformation that should be read during

the next call to init().

Servlet Life Cycle

211 Self-Instruction Manual

Notes

Example 11.3 –Servlet Life cycle example

// Import required java libraries
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

// Extend HttpServlet class
public class HelloWorld extends HttpServlet {

 private String message;

 public void init() throws ServletException {
 // Do required initialization
 message = "Hello World";
 }

 public void doGet(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {

 // Set response content type
 response.setContentType("text/html");

 // Actual logic goes here.
 PrintWriter out = response.getWriter();
 out.println("<h1>" + message + "</h1>");
 }

 public void destroy() {
 // do nothing.
 }
}

11.5 SINGLE THREAD MODEL

Although it is standard to have one servlet instance per registered servlet

name, itis possible for a servlet to elect instead to have a pool of instances

created for eachof its names, all sharing the duty of handling requests.

Such servlets indicate thisdesire by implementing the

javax.servlet.SingleThreadModel interface. Thisis an empty, tag

interface that defines no methods or variables and serves only toflag the

servlet as wanting the alternate life cycle.

A server that loads a SingleThreadModel servlet must guarantee,

according tothe Servlet API documentation, ―that no two threads will

execute concurrently the service method of that servlet‖. To accomplish

this, each thread uses a free servletinstance from the pool, as shown in

Figure 11.2. Thus, any servlet implementingSingleThreadModel can be

considered thread safe and isn‘t required to synchronizeaccess to its

instance variables.

Servlet Life Cycle

212 Self-Instruction Manual

Notes

Figure 11.2The Single Thread Model

The life cycle can be useful, however, in avoidingsynchronization while

still performing efficient request handling.

11.6 BACKGROUND PROCESSING

Servlets can do more than simply persist between accesses. They can also

executebetween accesses. Any thread started by a servlet can continue

executing even afterthe response has been sent. This ability proves most

useful for long-running taskswhose incremental results should be made

available to multiple clients. A backgroundthread started in init()

performs continuous work while requesthandlingthreads display the

current status with doGet(). It‘s a similar techniqueto that used in

animation applets, where a single thread changes the picture andanother

paints the display.

Example 11.4 shows a servlet that searches for prime numbers above one

quadrillion.

Example 11.4 – On the Hunt for Primes

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class PrimeSearcher extends HttpServlet
implements Runnable {
long lastprime = 0; // last prime found
Date lastprimeModified = new Date();
// when it was found
Thread searcher; // background search thread
public void init() throws ServletException {
searcher = new Thread(this);
searcher.setPriority(Thread.MIN_PRIORITY);
// be a good citizen
searcher.start();
}
public void run() {

Servlet Life Cycle

213 Self-Instruction Manual

Notes

// QTTTBBBMMMTTTOOO
long candidate = 1000000000000001L;
// one quadrillion and one
// Begin loop searching for primes
while (true) { // search forever
if (isPrime(candidate)) {
lastprime = candidate; // new prime
lastprimeModified = new Date();
// new "prime time"
}
candidate += 2; // evens aren't prime. Between
// candidates take a 0.2 second break.Another way
// to be a good citizen with system resources.
try {
searcher.sleep(200);
}
catch (InterruptedException ignored) { }
}
}
private static boolean isPrime(long candidate) {
// Try dividing the number by all odd numbers
// between 3 and its sqrt
long sqrt = (long) Math.sqrt(candidate);
for (long i = 3; i <= sqrt; i += 2) {
if (candidate % i == 0) return false;
// found a factor
< BACK CONTINUE >
This document is created with trial version of
CHM2PDF Pilot 2.15.72.
}
// Wasn't evenly divisible, so it's prime
return true;
}
public void doGet(HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException {
res.setContentType("text/plain");
PrintWriter out = res.getWriter();
if (lastprime == 0) {
out.println("Still searching for first prime...");
}
else {
out.println("The last prime discovered was " +
lastprime);
out.println(" at " + lastprimeModified);
}
}
public void destroy() {
searcher.stop();
}
}

Servlet Life Cycle

214 Self-Instruction Manual

Notes

11.7 LOAD ON STARTUP

To have the PrimeSearcher start searching for primes as quickly as

possible, we can configure the servlet's web application toload the servlet

at server start. This is accomplished by adding the <load-on-
startup>tag to the <servlet> entry of thedeployment descriptor.

The tag can also contain a positive integer indicating the order inwhich the

servlet should be loaded relative to other servlets in the context.

For example, the web.xmlshown in Example 11.5 guarantees first is

loaded beforesecond, while anytime could be loaded anytime during the

server startup.

Example 11.5 – A Little Servlet Parade

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
<servlet>
<servlet-name>
first
</servlet-name>
<servlet-class>
First
</servlet-class>
<load-on-startup>10</load-on-startup>
</servlet>
<servlet>
<servlet-name>
second
</servlet-name>
<servlet-class>
Second
</servlet-class>
<load-on-startup>20</load-on-startup>
</servlet>
<servlet>
<servlet-name>
anytime
</servlet-name>
<servlet-class>
Anytime
</servlet-class>
<load-on-startup/>
</servlet>
</web-app>

Servlet Life Cycle

215 Self-Instruction Manual

Notes

11.8 CLIENT SIDE CACHING AND SERVER SIDE CACHING

Client side caching

Let us consider, a web browser that repeatedly accessesPrimeSearcher

should need to call doGet() only after the searcher thread has found a

new prime. Until that time, any call todoGet() just generates the same

page the user has already seen, a page probably stored in the browser's

cache. What's reallyneeded is a way for a servlet to report when its output

has changed. That's where the getLastModified() method comes in.

Most web servers, when they return a document, include as part of their

response a Last-Modified header. An example Last-Modified header value

might be:

Tue, 06-May-98 15:41:02 GMT

This header tells the client the time the page was last changed. That

information alone is only marginally interesting, but it provesuseful when a

browser reloads a page.

Most web browsers, when they reload a page, include in their request an If-

Modified-Since header. Its structure is identical tothe Last-Modified

header:

Tue, 06-May-98 15:41:02 GMT

This header tells the server the Last-Modified time of the page when it was

last downloaded by the browser. The server canread this header and

determine if the file has changed since the given time. If the file has

changed, the server must send the newercontent. If the file hasn't changed,

the server can reply with a simple, short response that tells the browser the

page has not changed,and it is sufficient to redisplay the cached version of

the document.

Here's a getLastModified()method for our PrimeSearcherexample

that returns when the last prime was found:

public long getLastModified(HttpServletRequest
req)
{
return lastprimeModified.getTime() / 1000 * 1000;
}

Server side caching

The getLastModified()method can be used, with a little trickery, to

help manage a server-side cache of the servlet's output.Servlets

implementing this trick can have their output caught and cached on the

server side, then automatically resent to clients asappropriate according to

the servlet's getLastModified()method. This can greatly speed servlet

Servlet Life Cycle

216 Self-Instruction Manual

Notes

page generation, especiallyfor servlets whose output takes a significant

time to produce but changes only rarely, such as servlets that display

database results.

To implement this server-side caching behavior, a servlet must:

 Extend com.oreilly.servlet.CacheHttpServletinstead

of HttpServlet

 Implement a

getLastModified(HttpServletRequest)method as usual

11.9 ANSWERS TO CHECK YOUR PROGRESS

1. The servlet engine must conform to the following life cycle contract:

 Create and initialize the servlet.

 Handle zero or more service calls from clients.

 Destroy the servlet and then garbage collects it.

2. Depending on the server and its configuration, this can be at any of

these times:

 When the server starts

 When the servlet is first requested, just before the service()

method is invoked

 At the request of the server administrator

3. getLastModified() methodis a way for a servlet to report when

its output has changed or retrieve the cached data.

11.10LET US SUM UP

ISAPI (Internet Server API) is a Microsoft API, and provides speed

improvements over CGI programs. NSAPI (Netscape Server API) is a

Netscape API, provides speed improvements over CGI programs.

A servlet engine may execute all its servlets in a single Java

virtualmachine (JVM).

The servlet engine must conform to the following lifecycle contract:

 Create and initialize the servlet.

 Handle zero or more service calls from clients.

 Destroy the servlet and then garbage collects it.

Check Your Progress

1. List the activities involved in the servlet life cycle

2. When the init() method will be invoked?

3. What is the name of the function used for caching?

Servlet Life Cycle

217 Self-Instruction Manual

Notes

When the server loads the servlet,the server creates a single instance to

handle every request made of the servlet

When a server dispatches a request to a servlet, it first checks if the

servlet‘s classfile has changed on disk. If it has changed, the server

abandons the class loaderused to load the old version and creates a new

instance of the custom class loaderto load the new version.

A servlet‘sinit(ServletConfig) method is called by the server

immediately after theserver constructs the servlet‘s instance.

Depending on the server and its configuration,this can be at any of these

times:

 When the server starts

 When the servlet is first requested, just before the service()

method is invoked

 At the request of the server administrator

The server calls a servlet‘s destroy() method when the servlet is

about to beunloaded.

A server that loads a SingleThreadModel servlet must guarantee,

according tothe Servlet API documentation, ―that no two threads will

execute concurrently the service method of that servlet‖.

A backgroundthread started in init() performs continuous work

while requesthandlingthreads display the current status with doGet().

We can configure the servlet's web application toload the servlet at

server start. This is accomplished by adding the <load-on-

startup>tag to the <servlet> entry of thedeployment descriptor.

getLastModified() methodis a way for a servlet to report when its

output has changed.

11.11 SELF-ASSESSMENT EXERCISES

Short Questions

1. What are the functions involved in the Servlet life cycle?

2. What do you mean background processing?

3. What is the purpose of caching?

Detail Questions

1. Describe the Servlet Life Cycle.

2. State the need for Servlet reloading. Explain.

3. Discuss about the single thread model.

4. With suitable example explain about load on startup.

5. Explain about client and server side caching.

Servlet Life Cycle

218 Self-Instruction Manual

Notes

11.12SUGGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. Java servlet Programming, Joson Hunter, o‘Reilly,2010, 2
nd

Edition

Servlet Life Cycle

219 Self-Instruction Manual

Notes

UNIT- 12 RETRIEVING

INFORMATION

Structure

12.0 Introduction

12.1 Objectives

12.2 The Servlet

12.3 The Server

12.4 The Client

12.5 Answers to Check Your Progress

12.6 Let us Sum up

12.7 Self-Assessment Exercises

12.8 Suggested Readings

12.0 INTRODUCTION

To build a successful web application, you often need to know a lot about

the environment in which it is running. You may need tofind out about the

server that is executing your servlets or the specifics of the client that is

sending requests. And no matter whatkind of environment the application

is running in, you most certainly need information about the requests that

the application ishandling.A number of methods provide servlets access to

this information. For the most part, each method returns one specific

result.Compared this to the way environment variables are used to pass a

CGI program its information, the servlet approach has severaladvantages:
 Stronger type checking

 Delayed calculation

 More interaction with the server

The following table lists each CGI environmentvariable and the

corresponding HTTP servlet method.
CGI Environment Variable HTTP Servlet Method

SERVER_NAME req.getServerName()

SERVER_SOFTWARE getServletContext().getServerInfo()

SERVER_PROTOCOL req.getProtocol()

SERVER_PORT req.getServerPort()

REQUEST_METHOD req.getMethod()

PATH_INFO req.getPathInfo()

PATH_TRANSLATED req.getPathTranslated()

SCRIPT_NAME req.getServletPath()

DOCUMENT_ROOT getServletContext().getRealPath("/")

QUERY_STRING req.getQueryString()

REMOTE_HOST req.getRemoteHost()

REMOTE_ADDR req.getRemoteAddr()

AUTH_TYPE req.getAuthType()

REMOTE_USER req.getRemoteUser()

CONTENT_TYPE req.getContentType()

CONTENT_LENGTH req.getContentLength()

HTTP_ACCEPT req.getHeader("Accept")

Retrieving Information

220 Self-Instruction Manual

Notes

HTTP_USER_AGENT req.getHeader("User-Agent")

HTTP_REFERER req.getHeader("Referer")

12.1 OBJECTIVES

After going through this unit, you will be able to:

 Learn about the methods used for processing

o Servlets

o Servers

o Clients

12.2 THE SERVLET

Each registered servlet name can have specific initialization (init)

parameters associated with it. Init parameters are available to theservlet at

any time; they are set in the web.xml deployment descriptor and generally

used in init()to set initial or default valuesfor a servlet or to customize

the servlet's behavior in some way.

Getting a Servlet Init Parameter

A servlet uses the getInitParameter()method for access to its init

parameters:

public String
ServletConfig.getInitParameter(String name)

This method returns the value of the named init parameter or null if it does

not exist. The return value is always a single String. It is up to the servlet to

interpret the value.

public void init() throws ServletException
{
String greeting = getInitParameter("greeting");
}

Getting Servlet Init Parameter Names

A servlet can examine all its init parameters

usinggetInitParameterNames():

public Enumeration
ServletConfig.getInitParameterNames()

This method returns the names of all the servlet's init parameters as an

Enumeration of String objects or an empty Enumeration if no parameters

exist. It's most often used for debugging.

Getting a Servlet's Name

Retrieving Information

221 Self-Instruction Manual

Notes

Also in the ServletConfig interface there's a method that returns the

servlet's registered name:

public String ServletConfig.getServletName()

Using the servlet name in the key, each servlet instance can easily keep a

separate attribute value within the shared context.

Example 12.1

import java.util.*;
import javax.servlet.*;
public class InitSnoop extends GenericServlet {
// No init() method needed

public void service(ServletRequest req,
ServletResponse res)
throws ServletException, IOException {
res.setContentType("text/plain");
PrintWriter out = res.getWriter();
out.println("Init Parameters:");
Enumeration enum = getInitParameterNames();
while (enum.hasMoreElements()) {
String name = (String) enum.nextElement();
out.println(name + ": " + getInitParameter(name));
}
}

public void doGet(HttpServletRequest
req,HttpServletResponse res)
throws ServletException, IOException {
String name = getServletName();
ServletContext context = getServletContext();
Object value = context.getAttribute(name +
".state");
}
}

}

12.3 THE SERVER

A servlet can find out much about the server in which it is executing. It can

learn the hostname, listening port, and server software,among other things.

A servlet can display this information to a client, use it to customize its

behavior based on a particular serverpackage, or even use it to explicitly

restrict the machines on which the servlet will run.

There are five methods that a servlet can use to learn about its server: two

that are called using the ServletRequest object passedto the servlet and

Retrieving Information

222 Self-Instruction Manual

Notes

three that are called from the ServletContext object in which the

servlet is executing

A servlet can get the name of the server and the port number for a

particular request with getServerName() andgetServerPort(),

respectively:

public String ServletRequest.getServerName()
public int ServletRequest.getServerPort()

These methods are attributes of ServletRequest because the values can

change for different requests if the server has more thanone name (a

technique called virtual hosting).

The getServerInfo() and getAttribute() methods of

ServletContext provide information about the server softwareand its

attributes:

public String ServletContext.getServerInfo()
public Object ServletContext.getAttribute(String
name)

getServerInfo() returns the name and version of the server software,

separated by a slash. The string returned might besomething like Tomcat

Web Server. Some servers add extra information at the end describing the

server operatingenvironment.

getAttribute() returns the value of the named server attribute as an

Object or null if the attribute does not exist. Servershave the option to

place hardcoded attributes in the context for use by servlets.

Servlets can also add their own attributes to the context using the

setAttribute() method. Attribute names should follow the same

convention as package names. The package names java.* and javax.*

are reserved for use bythe Java Software division of Sun Microsystems,

and com.sun.* is reserved for use by Sun Microsystems.

A listing of all current attributes stored by the server and other servlets can

beobtained using getAttributeNames() :

public Enumeration
ServletContext.getAttributeNames()

Because these methods are attributes of the ServletContext in which

the servlet is executing, you have to call them through thatobject:

String serverInfo =
getServletContext().getServerInfo();

The javax.servlet.context.tempdir attribute maps to a temporary

directory where short-lived working files can be stored.

Retrieving Information

223 Self-Instruction Manual

Notes

File dir = (File) getServletContext()
.getAttribute("javax.servlet.context.tempdir");
File f = File.createTempFile("xxx", ".tmp", dir);

First, this servlet locates its temporary directory. Then, it uses the

createTempFile() method to create a temporary file in that directory

with an xxx prefix and .tmp suffix.

The ServletContextclass has two methods namely

getInitParameter()and getInitParameterNames()for retrieving

contextwide initialization information:

public String
ServletContext.getInitParameter(String name)
public Enumeration
ServletContext.getInitParameterNames()

12.4 THE CLIENT

For each request, a servlet has the ability to find out about the client machine

and, for pages requiring authentication, about the actual user. This information

can be used for logging access data, associating information with individual

users, or restricting access to certain clients.

A servlet can use getRemoteAddr()and getRemoteHost()to retrieve

the IP address and hostname of the client machine,respectively:

public String ServletRequest.getRemoteAddr()
public String ServletRequest.getRemoteHost()

Both values are returned as Stringobjects. The information comes from

the socket that connects the server to the client, so theremote address and

hostname may be that of a proxy server.

The IP address or remote hostname can be converted to a

java.net.InetAddressobject using InetAddress.getByName():

InetAddress remoteInetAddress =
InetAddress.getByName(req.getRemoteAddr());

The servlet can get the name of the user that was accepted by the server,

using the getRemoteUser() method:

public String HttpServletRequest.getRemoteUser()

An HTTP servlet gets its request parameters as part of its query string (for

GET requests) or as encoded POST data (for POST requests), or

sometimes both. Fortunately, every servlet retrieves its parameters the

same way, using getParameter() and getParameterValues():

Retrieving Information

224 Self-Instruction Manual

Notes

public String ServletRequest.getParameter(String
name)
public String[]
ServletRequest.getParameterValues(String name)

getParameter() returns the value of the named parameter as a String

or null if the parameter was not specified. The value is guaranteed to be

in its normal, decoded form. If there's any chance a parameter could have

more than one value, you should use the getParameterValues()

method instead. This method returns all the values of the named parameter

as an array of String objects or null if the parameter was not specified. A

single value is returned in an array of length 1. If you call

getParameter() on a parameter with multiple values, the value returned

is the same as the first value returned by getParameterValues().

A servlet can use several methods to find out exactly what file or servlet

the client requested. After all, only the most conceited servlet would

always assume itself to be the direct target of a request. A servlet may be

nothing more than the handler for some other content. No method directly

returns the original Uniform Resource Locator (URL) used by the client to

make a request. The javax.servlet.http.HttpUtils class, however,

provides a getRequestURL() methodthat does about the same thing:

public static StringBuffer
HttpUtils.getRequestURL(HttpServletRequest req)

This method reconstructs the request URL based on information available

in the HttpServletRequest object. It returns a StringBuffer that

includes the scheme (such as HTTP), server name, server port, and extra

path information.

12.5 ANSWERS TO CHECK YOUR PROGRESS

1. The servlet has advantages like stronger type checking, delayed

calculation, more interaction with the server

2. Virtual hosting is a technique in which the methods are attributes of

ServletRequest because the values can change for different

requests if the server has more thanone name.

3. Some of the methods associated with Servlets are listed below

 getServletName()

 getServerName()

Check Your Progress

1. List the advantages of the using Servlets when compared to

CGI.

2. What is Virtual Hosting?

3. List some of the methods associated with Servlets.

Retrieving Information

225 Self-Instruction Manual

Notes

 getServerPort()

 getServerInfo()

12.6LET US SUM UP

The servlet approach has severaladvantages:
 Stronger type checking

 Delayed calculation

 More interaction with the server

Init parameters are available to theservlet at any time; they are set in

the web.xml deployment descriptor and generally used in init()to set

initial or default valuesfor a servlet

Virtual hosting is a technique in which the methods are attributes of

ServletRequest because the values can change for different requests

if the server has more thanone name.

Function Purpose

getInitParameter()
This method returns the value of the named
init parameter or null if it does not exist. The

return value is always a single String

getInitParameterNames()

This method returns the names of all the
servlet's init parameters as an Enumeration of

String objects or an empty Enumeration if no

parameters exist. It's most often used for

debugging

getServletName()
Using the servlet name in the key, each servlet

instance can easily keep a separate attribute

value within the shared context

getServerName() Get the name of the server name

getServerPort() Get the name of the server port number

getServerInfo()
Returns the name and version of the server

software, separated by a slash.

getAttribute()
Returns the value of the named server attribute

as an Object or null if the attribute does not
exist.

setAttribute()
Servlets can also add their own attributes to

the context using this method

getAttributeNames()
A listing of all current attributes stored by the

server and other servlets can be obtained

createTempFile() To create a temporary file in the directory

getInitParameter()
Retrieving context wide initialization

parameter information

getInitParameterNames()
Retrieving context wide initialization

parameter name information

getRemoteAddr()
To retrieve the IP address of the client

machine

getRemoteHost() To retrieve the hostname of the client machine

InetAddress.getByName()
The IP address or remote hostname can be

converted to a

Retrieving Information

226 Self-Instruction Manual

Notes

java.net.InetAddressobject

getRemoteUser()
The servlet can get the name of the user that
was accepted by the server

getParameter()
Returns the value of the named parameter as a

String or null if the parameter was not

specified

getParameterValues()
This method returns all the values of the

named parameter as an array of String objects
or null if the parameter was not specified

getRequestURL()
It returns a StringBuffer that includes the

scheme (such as HTTP), server name, server
port, and extra path information.

.

12.7 SELF-ASSESSMENT EXERCISES

Short Questions

1. List the methods associated with Server.

2. Name some of the methods of Clinet.

Detail Questions

1. Describe the methods used to retrieve information about the Servlet.

2. Discuss about the methods used to retrieve information of the Server.

3. Explain the methods of Client.

12.8SUGGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. Java servlet Programming, Joson Hunter, O‘Reilly,2010, 2
nd

Edition

Retrieving Information

227 Self-Instruction Manual

Notes

BLOCK – V

JSP TECHNOLOGY

UNIT-13 JAVA SERVER PAGES

Structure

13.0 Introduction

13.1 Objectives

13.2 Need for JSP

13.3 HTTP and Servlet basics

13.4 HTTP request/response model

13.5 Anatomy of a JSP page

13.6 JSP application design with MVC

13.7 Answers to Check Your Progress

13.8 Let us Sum up

13.9 Self-Assessment Exercises

13.10 Suggested Readings

13.0 INTRODUCTION

In late 1999, Sun Microsystems added a new element to the collection of

EnterpriseJava tools: JavaServer Pages (JSP). JavaServer Pages are built

on top of Javaservlets and designed to increase the efficiency in which

programmers, and evennonprogrammers, can create web content.

JavaServer Pages is a technology for developing web pages thatinclude

dynamic content. Unlike a plain HTML page, which contains static content

that always remains the same, a JSP page can change its content based on

anynumber of variable items, including the identity of the user, the user's

browser type,information provided by the user, and selections made by the

user.

13.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the need for JSP Applications

 Learn about the HHTP request/response model

 Know the anatomy of a JSP page

 Design JSP application using MVC

Java Server Pages

228 Self-Instruction Manual

Notes

13.2NEED FOR JSP

A JSP page contains standard markup language elements, such as HTML

tags, justlike a regular web page. However, a JSP page also contains

special JSP elements thatallow the server to insert dynamic content in the

page. JSP elements can be used fora variety of purposes, such as retrieving

information from a database or registeringuser preferences. When a user

asks for a JSP page, the server executes the JSPelements, merges the

results with the static parts of the page, and sends thedynamically

composed page back to the browser, as illustrated in Figure 13.1.

Figure 13.1. Generating dynamic cotent with JSP elements

JSP defines a number of standard elements that are useful for any web

application,such as accessing JavaBeans components, passing control

between pages andsharing information between requests, pages, and users.

Developers can also extendthe JSP syntax by implementing application-

specific elements that perform taskssuch as accessing databases and

Enterprise JavaBeans, sending email, andgenerating HTML to present

application-specific data.

Numerous CGI alternatives and enhancements, such as FastCGI, mod_perl

fromApache, NSAPI from Netscape, ISAPI from Microsoft, and Java

servlets from SunMicrosystems, have been created over the years.

While these solutions offer betterperformance and scalability, all these

technologies suffer from a common problem:they generate web pages by

embedding HTML directly in programming language code. This pushes the

creation of dynamic web pages exclusively into the domain

ofprogrammers. JavaServer Pages, however, changes all that.

Embedding Dynamic Elements in HTML Pages

Instead of embedding HTML inprogramming code, JSP lets you embed

special active elements into HTML pages.These elements look similar to

HTML elements, but behind the scenes they areactually componentized

Java programs that the server executes when a userrequests the page.

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<body bgcolor="white">
<jsp:useBean id="clock" class="java.util.Date" />
<c:choose>

Java Server Pages

229 Self-Instruction Manual

Notes

<c:when test="${clock.hours < 12}">
<h1>Good morning!</h1>
</c:when>
<c:when test="${clock.hours < 18}">
<h1>Good day!</h1>
</c:when>
<c:otherwise>
<h1>Good evening!</h1>
</c:otherwise>
</c:choose>
Welcome to our site, open 24 hours a day.
</body>
</html>

Compilation

Another benefit that is important to mention is that a JSP page is always

compiledbefore it's processed by the server

Using the Right Person for Each Task

JSP allows you to separate the markup language code, suchas HTML, from

the programming language code used to process user input,

accessdatabases, and perform other application tasks.

Integration with Enterprise Java APIs

JavaServer Pages are built on top of the Java Servlets API, JSP hasaccess

to all the powerful Enterprise Java APIs

JSP combines the most important features found in the alternatives:

 JSP supports both scripting and elementbased dynamic content,

and allows developers to create custom tag libraries to satisfy

applicationspecific needs.

 JSP pages are compiled for efficient server processing.

 JSP pages can be used in combination with servlets that handle

the business logic, the model favored by Java servlet template

engines.

In addition, JSP has a couple of unique advantages that make it stand out

from thecrowd:

 JSP is a specification, not a product. This means vendors can

compete withdifferent implementations, leading to better

performance and quality.

 JSP is an integral part of J2EE, a complete platform for

enterprise class applications. This means that JSP can play a

part in the simplest applicationsto the most complex and

demanding.

Java Server Pages

230 Self-Instruction Manual

Notes

13.3HTTP AND SERVLET BASICS

 Web applications can be defined as an application running on a

server a user accesses through a thin, general-purpose client

 Servlets are modules that extend request/response-oriented

servers, such as Java-enabled web servers. For example, a servlet

might be responsible for taking data in an HTML order-entry

form and applying the business logic used to update a company's

order database.

 HTTP stands for Hyper Text Transfer Protocol which is a basis of

data communication in the internet.

 When the web server receives the request, it looks at the URI and

decides, based on configuration information, how to handle it. It

may handle it internally by simply reading an HTML file from the

filesystem, or it can forward the request to somecomponent that is

responsible for the resource corresponding to the URI.

 This can be a program that uses database information, for

instance, to dynamically generate an appropriate response. To the

browser it makes no difference how the request is handled; all it

cares about is getting a response.The response message looks

similar to the request message.

.

Figure 13.2. Interaction between a web client and a server

13.4 HTTP REQUEST/RESPONSE MODEL

HTTP and all extended protocols based on HTTP are based on a very

simplecommunications model. Here's how it works: a client, typically a

web browser, sendsa request for a resource to a server, and the server sends

back a responsecorresponding to the resource (or a response with an error

message if it can'tprocess the request for some reason). A resource can be a

Java Server Pages

231 Self-Instruction Manual

Notes

number of things, such asa simple HTML file returned verbatim to the

browser or a program that generates theresponse dynamically. This

request/response model is illustrated in Figure 13.3.

Figure 13.3. HTTP request/response with two resources

This simple model implies three important facts you need to be aware of:

 HTTP is a stateless protocol. This means that the server doesn't

keep any information about the client after it sends its response,

and therefore it can'trecognize that multiple requests from the

same client may be related.

 Web applications can't easily provide the kind of immediate

feedback typically found in standalone GUI applications such as

word processors or traditional client/server applications. Every

interaction between the client and the server requires a

request/response exchange. Performing a request/response

exchange when a user selects an item in a list box or fills out a

form element is usually too taxing on the bandwidth available to

most Internet users.

 There's nothing in the protocol that tells the server how a request

is made;consequently, the server can't distinguish between

various methods of triggering the request on the client. For

example, HTTP doesn't allow a web server to differentiate

between an explicit request caused by clicking a link or

submitting a form and an implicit request caused by resizing the

browser window or using the browser's Back button. In addition,

HTTP doesn't contain any means for the server to invoke client

specific functions, such as going back in the browser history list

or sending the response to a certain frame. Also, the server can't

detect when the user closes the browser.

13.5ANATOMY OF A JSP PAGE

A JSP page is simply a regular web page with JSP elements for generating

the partsthat differ for each request, as shown in Figure 13.4.Everything in

the page that isn't a JSP element is called template text. Template textcan

be any text:

 HTML

 WML

 XML or even plain text.

Java Server Pages

232 Self-Instruction Manual

Notes

Since HTML is by far the mostcommon web page language in use today,

most of the descriptions and examples inthis book use HTML, but keep in

mind that JSP has no dependency on HTML; it canbe used with any

markup language. Template text is always passed straight throughto the

browser.When a JSP page request is processed, the template text and

dynamic contentgenerated by the JSP elements are merged, and the result

is sent as the response tothe browser.

Figure 13.4. Template text and JSP elements

Example of JSP scriptlet tag that prints the user name

In this example, we have created two files index.html and welcome.jsp.

The index.html file gets the username from the user and the welcome.jsp

file prints the username with the welcome message.

File: index.html

<html>
<body>
<form action="welcome.jsp">
<input type="text" name="uname">
<input type="submit" value="go">

</form>
</body>
</html>

Java Server Pages

233 Self-Instruction Manual

Notes

File: welcome.jsp

<html>
<body>
<%
String name=request.getParameter("uname");
out.print("welcome "+name);
%>
</form>
</body>
</html>

13.6JSP APPLICATION DESIGN WITH MVC

JSP technology can play a part in everything from the simplest web

application, suchas an online phone list or an employee vacation planner,

to complex enterpriseapplications, such as a human resource application or

a sophisticated onlineshopping site. A design model called Model-View-

Controller (MVC) is suitable forboth simple and complex

applications.MVC was first described by Xerox in a number of papers

published in the late 1980s.The key point of using MVC is to separate

logic into three distinct units:

 The Model

 The View and

 The Controller.

The terms are described below.

• Model represents the state of the application i.e. data. It can also

have business logic.

• View represents the presentation i.e. UI(User Interface).

• Controller acts as an interface between View and Model.

Controller intercepts all the incoming requests.

Figure 13.5. The MVC Architecture

In a server application, we commonly classify the partsof the application as

business logic, presentation, and request processing. Businesslogic is the

term used for the manipulation of an application's data, such ascustomer,

product, and order information. Presentation refers to how the

applicationdata is displayed to the user, for example, position, font, and

Java Server Pages

234 Self-Instruction Manual

Notes

size. And finally,request processing is what ties the business logic and

presentation parts together. InMVC terms, the Model corresponds to

business logic and data, the View to thepresentation, and the Controller to

the request processing.

13.7 ANSWERS TO CHECK YOUR PROGRESS

1. JavaServer Pages is a technology for developing web pages

thatinclude dynamic content

2. Advantages of JSP are

 Embedding Dynamic Elements in HTML Pages

 Compilation

 Using the Right Person for Each Task

 Integration with Enterprise Java APIs

3. A design model called Model-View-Controller (MVC) is suitable

forboth simple and complex applications.

13.8 LET US SUM UP

JavaServer Pages is a technology for developing web pages thatinclude

dynamic content

JSP page can change its content based on anynumber of variable items,

including the identity of the user, the user's browser type,information

provided by the user, and selections made by the user.

When a user asks for a JSP page, the server executes the JSPelements,

merges the results with the static parts of the page, and sends

thedynamically composed page back to the browser

Important features of JSP are

 JSP supports both scripting and elementbased dynamic content,

and allows developers to create custom tag libraries to satisfy

applicationspecific needs.

 JSP pages are compiled for efficient server processing.

 JSP pages can be used in combination with servlets that handle

the business logic, the model favored by Java servlet template

engines

Check Your Progress

1. What is JSP?

2. What are the advantages of JSP?

3. What do you mean by MVC?

Java Server Pages

235 Self-Instruction Manual

Notes

Advantages of JSP

 Embedding Dynamic Elements in HTML Pages

 Compilation

 Using the Right Person for Each Task

 Integration with Enterprise Java APIs

The HTTP request / response model conveys the following facts

 HTTP is a stateless protocol.

 Every interaction between the client and the server requires a

request/response exchange.

 The server can't distinguish between various methods of

triggering the request on the client

A design model called Model-View-Controller (MVC) is suitable

forboth simple and complex applications.

The key point of using MVC is to separate logic into three distinct

units:

 The Model

 The View and

 The Controller

Model represents the state of the application i.e. data. It can also have

business logic.

View represents the presentation i.e. UI(User Interface).

Controller acts as an interface between View and Model. Controller

intercepts all the incoming requests.

13.9 SELF-ASSESSMENT EXERCISES

Short Questions

1. What the need for JSP?

2. State the important features of JSP.

3. What is the difference between Servlet and JSP?

4. What do you mean by MVC?

Detail Questions

1. Write a note on HTTP request / response model.

2. Discuss about the anatomy of a JSP page.

3. Explain about the MVC design.

13.10SUGGESTED READINGS

1. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

2. Bates, Developing web applications, wiley,2006

3. Java server pages, Hans Bergsten, o‘reilly,2010

Java Server Pages

236 Self-Instruction Manual

Notes

UNIT- 14 SETTING UP JSP

ENVIRONMENT

Structure

14.0 Introduction

14.1 Objectives

14.2 Installing the JSDK

14.3 Installing the Tomcat Server

14.4 Testing Tomcat

14.5 Creating, installing and running a JSP page

14.6 JSP Program Example

14.7 Answers to Check Your Progress

14.8 Let us Sum up

14.9 Self-Assessment Exercises

14.10 Suggested Readings

14.0 INTRODUCTION

A development environment is where you would develop your JSP

programs, test them and finally run them. This unit will describe the steps

involved in setting the environment for JSP programming. The software

that are to be installed are described in the subsequent sections.

14.1 OBJECTIVES

After going through this unit, you will be able to:

 Install the JSDK

 Install and test Tomcat Server

 Create, install and runn a JSP page

14.2INSTALLING THE JSDK

This step involves downloading an implementation of the Java Software

Development Kit (JSDK) and setting up the PATH environment variable

appropriately.

You can download SDK from Oracle's Java site − Java SE Downloads.

Once you download your Java implementation, follow the given

instructions to install and configure the setup.

Finally set the PATH and JAVA_HOME environment variables to refer to the

directory that contains java and javac,

Setting of JSP

Environment

https://www.oracle.com/technetwork/java/javase/downloads/index.html

237 Self-Instruction Manual

Notes

typicallyjava_install_dir/bin and java_install_dir respectiv

ely.

If you are running Windows and install the SDK in C:\jdk1.5.0_20,

you need to add the following line in your C:\autoexec.bat file.

set PATH = C:\jdk1.5.0_20\bin;%PATH%
set JAVA_HOME = C:\jdk1.5.0_20

Alternatively, on Windows NT/2000/XP, you can also right-click on My
Computer, select Properties, then Advanced, followed

by Environment Variables. Then, you would update the PATH value

and press the OK button.

On Unix (Solaris, Linux, etc.), if the SDK is installed

in /usr/local/jdk1.5.0_20 and you use the C shell, you will put the

following into your .cshrc file.

setenv PATH /usr/local/jdk1.5.0_20/bin:$PATH
setenv JAVA_HOME /usr/local/jdk1.5.0_20

Alternatively, if you use an Integrated Development Environment

(IDE) like NetBeans, Borland JBuilder, Eclipse, IntelliJ IDEA, or Sun

ONE Studio, compile and run a simple program to confirm that the IDE

knows where you installed Java.

14.3INSTALLING THE TOMCAT SERVER

A number of Web Servers that support JavaServer Pages and Servlets

development are available in the market. Some web servers can be

downloaded for free and Tomcat is one of them.

Apache Tomcat is an open source software implementation of the

JavaServer Pages and Servlet technologies and can act as a standalone

server for testing JSP and Servlets, and can be integrated with the Apache

Web Server. Here are the steps to set up Tomcat on your machine.

 Download the latest version of Tomcat

from https://tomcat.apache.org/.

 Once you downloaded the installation, unpack the binary

distribution into a convenient location. For example,

in C:\apache-tomcat-5.5.29 on windows, or

/usr/local/apache-tomcat-5.5.29 on Linux/Unix and

create CATALINA_HOME environment variable pointing to these

locations.

Tomcat can be started by executing the following commands on the

Windows machine

%CATALINA_HOME%\bin\startup.bat
or

Setting of JSP

Environment

238 Self-Instruction Manual

Notes

 C:\apache-tomcat-5.5.29\bin\startup.bat

Tomcat can be started by executing the following commands on the Unix

(Solaris, Linux, etc.) machine

$CATALINA_HOME/bin/startup.sh
or

 /usr/local/apache-tomcat-5.5.29/bin/startup.sh

14.4TESTING TOMCAT

The Tomcat installation directory contains a number of

subdirectories.Some of them are

 bin
 conf
 webapps
 logs
 work

To test the server, run the startup script as described in the platform-

specificsections, and (assuming you're running Tomcat on the same

machine as the browserand that you're using the default 8080 port for

Tomcat) open a browser and enterthis URL in the Location/Address field:

http://localhost:8080/.

Upon execution, you will receive the following output

Further information about configuring and running Tomcat can be found in

the documentation included here, as well as on the Tomcat web site

https://tomcat.apache.org/.

Setting of JSP

Environment

https://tomcat.apache.org/

239 Self-Instruction Manual

Notes

Tomcat can be stopped by executing the following commands on the

Windows machine

%CATALINA_HOME%\bin\shutdown
or

C:\apache-tomcat-5.5.29\bin\shutdown

Tomcat can be stopped by executing the following commands on Unix

(Solaris, Linux, etc.) machine

$CATALINA_HOME/bin/shutdown.sh
or

/usr/local/apache-tomcat-5.5.29/bin/shutdown.sh

Setting up CLASSPATH

Since servlets are not part of the Java Platform, Standard Edition, you must

identify the servlet classes to the compiler.If you are running Windows,

you need to put the following lines in your C:\autoexec.bat file.

set CATALINA = C:\apache-tomcat-5.5.29
set CLASSPATH = %CATALINA%\common\lib\jsp-
api.jar;%CLASSPATH%

Alternatively, on Windows NT/2000/XP, you can also right-click on My
Computer, select Properties, then Advanced, then Environment
Variables. Then, you would update the CLASSPATH value and press the

OK button.

On Unix (Solaris, Linux, etc.), if you are using the C shell, you would put

the following lines into your .cshrc file.

setenv CATALINA = /usr/local/apache-tomcat-5.5.29
setenv CLASSPATH $CATALINA/common/lib/jsp-
api.jar:$CLASSPATH

Note :

Assuming that your development directory is C:\JSPDev

(Windows) or /usr/JSPDev (Unix), then you would need to add these

directories as well in CLASSPATH.

14.5CREATING, INSTALLING AND RUNNING A JSP PAGE

A JSP page is just a regular HTML page with a few specialelements. A

JSP page should have the file extension .jsp, which tells the server thatthe

page needs to be processed by the JSP container. Without this clue, the

server is unable to distinguish a JSP page from any other type of file and

sends it unprocessedto the browser.When working with JSP pages, you just

need a regular text editor such as Notepadon Windows or Emacs on Unix.

There are a number of tools that may make it easierfor you, such as syntax-

aware editors that color-code JSP and HTML elements. SomeInteractive

Setting of JSP

Environment

240 Self-Instruction Manual

Notes

Development Environments (IDE) even include a small web containerthat

allows you to easily execute and debug the pages during development.

Creating a JSP page

The first example JSP page, named easy.jsp, is shown in Example 14.1.

Example 14.1. JSP page showing a dynamically calculated sum(easy.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core" %>
<html>
<head>
<title>JSP is Easy</title>
</head>
<body bgcolor="white">
<h1>JSP is as easy as ...</h1>
<%-- Calculate the sum of 1 + 2 + 3 dynamically --
%>
1 + 2 + 3 = <c:out value="${1 + 2 + 3}" />
</body>
</html>

The easy.jsp page displays static HTML plus the sum of 1, 2, and 3,

calculated at runtime and dynamically added to the response. We'll look at

all the different pieces soon, but first you may want to run the example to

see how it works.

Installing a JSP page

A complete web application may consist of several different resources: JSP

pages,servlets, applets, static HTML pages, custom tag libraries, and other

Java class files.Until very recently, an application with all these

components had to be installed andconfigured in different ways for

different servers, making it hard for web applicationdevelopers to provide

easy-to-use installation instructions and tools. The web.xml file is given

below.

/index.html
/cover.gif
/unit14/easy.jsp
/WEB-INF/web.xml
/WEB-INF/classes/JSPSourceServlet.class
/WEB-INF/lib/orataglib_3_0.jar

Running a JSP page

First startthe Tomcat server and load the book examples main page by

typing the URL http://localhost:8080/ora/index.html in the

browser address field.

Setting of JSP

Environment

241 Self-Instruction Manual

Notes

14.6 JSP EXAMPLE

STEP1:

 Create a table in SQL as given below

Create table profile (id number(10), name
varchar(10), email varchar(10),
password varchar(10), location varchar(10));

STEP2:

 Go to webpage folder and create new html files

 Save them as index.jsp and insertregistration.jsp and paste the

following code.

index.jsp

<%@ page language="java" contentType="text/html;
charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>

<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=ISO-8859-1">
<title>Simple Registration Form</title>
</head>

<body>
<h1>Student Register Form</h1>

<form action="example.jsp">

<table>
<tr>
<td>UserName</td>
<td><input type="text" name="username" /></td>
</tr>

<tr>
<td>Password</td>
<td><input type="password" name="password" /></td>
</tr>

<tr>
<td>Contact No</td>
<td><input type="text" name="contact" /></td>
</tr>

</table>

Setting of JSP

Environment

242 Self-Instruction Manual

Notes

<input type="submit" value="Submit" /></form>
</body>
</html>

insertregistration.jsp

%@page
import="java.sql.*,java.lang.*,dbconnection.*,java
.text.SimpleDateFormat,java.util.*,java.io.*,javax
.servlet.*, javax.servlet.http.*"
errorPage="Error.jsp"%

<%@page import=" java.security.MessageDigest"%>
<%@page import=" java.security.*"%>
<%@page import="javax.crypto.*"%>

<%
Connection con;
Statement st = null;
ResultSet rs1=null;
int id=0;

try
{
Class.forName("oracle.jdbc.driver.OracleDriver");

con=DriverManager.getConnection("jdbc:oracle:thin:
@HbAdmin:1521:XE","system","system");

st=con.createStatement();

String sql1="select max(id) from profile";
rs1=st.executeQuery(sql1);

while(rs1.next())
{

if(rs1.getInt(1)==0)
id=1;
else
id=rs1.getInt(1)+1;

session.setAttribute("id",id);
String name=null, location=null,gender=null,
email=null, password=null,phone=null,image=null,
comment=null;
int report=0;
int upload=0;

try
{

Setting of JSP

Environment

243 Self-Instruction Manual

Notes

name=request.getParameter("name");
email=request.getParameter("email");
password=request.getParameter("password");
location=request.getParameter("location");

Connection con1=db.getconnection();
PreparedStatement ps=con1.prepareStatement("INSERT
INTO profile VALUES(?,?,?,?,?)");

ps.setInt(1,id);
ps.setString(2,name);
ps.setString(3,email);
ps.setString(4,password);
ps.setString(5,location);
int x=ps.executeUpdate();

if(x!=0)
{
response.sendRedirect("index.jsp?message=successfu
lly registered");
}

else
{
response.sendRedirect("index.html?message=fail");
}

}
catch (Exception e)

{
out.println(e.getMessage());
}
}

}
catch (Exception eq)
{
out.println(eq.getMessage());
}
%>

STEP 4:

 Check database connection and save files in the web page folder.

 Check the web.xml file

STEP 5:

 Right click on the project.

 Build and Run the project

Setting of JSP

Environment

244 Self-Instruction Manual

Notes

Output

14.7 ANSWERS TO CHECK YOUR PROGRESS

1. The software need for running JSP are the JSDK and a web server

such as Tomcat.

2. The Tomcat installation directory contains a number of

subdirectories. Some of them are

 bin
 conf
 webapps
 logs
 work

3. Apache Tomcat is an open source software implementation of the

JavaServer Pages and Servlet technologies and can act as a

standalone server for testing JSP and Servlets, and can be

integrated with the Apache Web Server.

Check Your Progress

1. What are the software need to be installed for running JSP?

2. List some of the folders created automatically after the

installation of Tomcat for JSP.

3. What is the need for Tomcat?

Setting of JSP

Environment

245 Self-Instruction Manual

Notes

14.8 LET US SUM UP

A number of Web Servers that support JavaServer Pages and Servlets

development are available in the market.

Apache Tomcat is an open source software implementation of the

JavaServer Pages and Servlet technologies and can act as a standalone

server for testing JSP and Servlets, and can be integrated with the

Apache Web Server.

The Tomcat installation directory contains a number of subdirectories.

Some of them are

 bin
 conf
 webapps
 logs
 work

14.9 SELF-ASSESSMENT EXERCISES

Short Questions

1. What is the ID for the local port?

2. Mention the address from where the JSDK and Tomcat can be

downloaded.

Detail Questions

1. Explaing in detail about installing JSDK.

2. Describe the steps involved in installing Tomcat.

3. Write a program example in JSP

14.10SUGGESTED READINGS

1. Web Programming: Building Internet applications, Chris Bates,

Wiley India

2. Web technologies – A computer science perspective, Jeffrey C

Jackson, Pearson Education, 2006

3. Robert W.Sebesta ―Programming the world wide web‖ Pearson

Education

4. Bates, Developing web applications, wiley,2006

5. Java servlet Programming, Joson Hunter, O‘Reilly,2010, 2
nd

Edition

6. Java server pages, Hans Bergsten, O‘reilly,2010

Setting of JSP

Environment

246 Self-Instruction Manual

Notes

MODEL QUESTION PAPER

DISTANCE EDUCATION

M. Sc DEGREE EXAMINATION

341 33– WEB TECHNOLOGY

Third Semester

(CBCS – 2018-19 Academic Year Onwards)

Time : 3 hours Max Marks :75

PART - A (10 x 2=20 Marks)

Answer all questions.

1. Define the term hyperlink

2. What do you mean by Style sheets?

3. What is a cookier?

4. State the purpose of data validation.

5. What do you mean by DOM?

6. Expand SAX and XSL.

7. State the advantages of Servlets.

8. What is the purpose of init() and destroy().

9. What do you mean by client side caching?

10. What is the purpose of Tomcat?

PART - B (5 x 5 Marks = 25 Marks)

Answer all questions choosing either (a) or (b)

11.a). Write a note on basic HTML tags.

OR

11. b). Describe the usage of table tag in HTML.

12.a). What do you mean by build in functions in Java Script? Explain.

OR

12. b). Write a note on cookies.

13.a). Describe about Document Object Model (DOM).

OR

13. b). Write a note on XSLT and XPATH.

Model Question Paper

247 Self-Instruction Manual

Notes

14.a). Explain about Single Thread Model.

OR

14. b). Describe some functions used for retrieving information.

15.a). Explain the anatomy of a JSP page.

OR

15. b). Write a note on MVC.

Part – C (3 x 10 = 30 Marks)

Answer any three questions.

16. Explain in detail about Style sheets.

17. How will you perform validations in Java Script? Explain with

example.

18. Discuss in detail about representing and processing XML using Java

Script.

19. Describe the Servlet life cycle with example.

20. Explain about creating, installing and running a JSP page.

Model Question Paper

